2022-04-28 10:28:14 +08:00
|
|
|
|
# SRN
|
|
|
|
|
|
|
|
|
|
- [1. 算法简介](#1)
|
|
|
|
|
- [2. 环境配置](#2)
|
|
|
|
|
- [3. 模型训练、评估、预测](#3)
|
|
|
|
|
- [3.1 训练](#3-1)
|
|
|
|
|
- [3.2 评估](#3-2)
|
|
|
|
|
- [3.3 预测](#3-3)
|
|
|
|
|
- [4. 推理部署](#4)
|
|
|
|
|
- [4.1 Python推理](#4-1)
|
|
|
|
|
- [4.2 C++推理](#4-2)
|
|
|
|
|
- [4.3 Serving服务化部署](#4-3)
|
|
|
|
|
- [4.4 更多推理部署](#4-4)
|
|
|
|
|
- [5. FAQ](#5)
|
|
|
|
|
|
|
|
|
|
<a name="1"></a>
|
|
|
|
|
## 1. 算法简介
|
|
|
|
|
|
|
|
|
|
论文信息:
|
|
|
|
|
> [Towards Accurate Scene Text Recognition with Semantic Reasoning Networks](https://arxiv.org/abs/2003.12294#)
|
|
|
|
|
> Deli Yu, Xuan Li, Chengquan Zhang, Junyu Han, Jingtuo Liu, Errui Ding
|
|
|
|
|
> CVPR,2020
|
|
|
|
|
|
|
|
|
|
使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法复现效果如下:
|
|
|
|
|
|
|
|
|
|
|模型|骨干网络|配置文件|Acc|下载链接|
|
2022-04-28 19:23:53 +08:00
|
|
|
|
| --- | --- | --- | --- | --- |
|
2022-04-28 10:28:14 +08:00
|
|
|
|
|SRN|Resnet50_vd_fpn|[rec_r50_fpn_srn.yml](../../configs/rec/rec_r50_fpn_srn.yml)|86.31%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar)|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<a name="2"></a>
|
|
|
|
|
## 2. 环境配置
|
|
|
|
|
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<a name="3"></a>
|
|
|
|
|
## 3. 模型训练、评估、预测
|
|
|
|
|
|
|
|
|
|
请参考[文本识别教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要**更换配置文件**即可。
|
|
|
|
|
|
|
|
|
|
训练
|
|
|
|
|
|
|
|
|
|
具体地,在完成数据准备后,便可以启动训练,训练命令如下:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
#单卡训练(训练周期长,不建议)
|
|
|
|
|
python3 tools/train.py -c configs/rec/rec_r50_fpn_srn.yml
|
|
|
|
|
|
|
|
|
|
#多卡训练,通过--gpus参数指定卡号
|
|
|
|
|
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_r50_fpn_srn.yml
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
评估
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
# GPU 评估, Global.pretrained_model 为待测权重
|
|
|
|
|
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r50_fpn_srn.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
预测:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
# 预测使用的配置文件必须与训练一致
|
|
|
|
|
python3 tools/infer_rec.py -c configs/rec/rec_r50_fpn_srn.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
<a name="4"></a>
|
|
|
|
|
## 4. 推理部署
|
|
|
|
|
|
|
|
|
|
<a name="4-1"></a>
|
|
|
|
|
### 4.1 Python推理
|
|
|
|
|
首先将SRN文本识别训练过程中保存的模型,转换成inference model。( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar) ),可以使用如下命令进行转换:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
python3 tools/export_model.py -c configs/rec/rec_r50_fpn_srn.yml -o Global.pretrained_model=./rec_r50_vd_srn_train/best_accuracy Global.save_inference_dir=./inference/rec_srn
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
SRN文本识别模型推理,可以执行如下命令:
|
|
|
|
|
|
|
|
|
|
```
|
2022-08-22 16:03:12 +08:00
|
|
|
|
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_srn/" --rec_image_shape="1,64,256" --rec_algorithm="SRN" --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --use_space_char=False
|
2022-04-28 10:28:14 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
<a name="4-2"></a>
|
|
|
|
|
### 4.2 C++推理
|
|
|
|
|
|
|
|
|
|
由于C++预处理后处理还未支持SRN,所以暂未支持
|
|
|
|
|
|
|
|
|
|
<a name="4-3"></a>
|
|
|
|
|
### 4.3 Serving服务化部署
|
|
|
|
|
|
|
|
|
|
暂不支持
|
|
|
|
|
|
|
|
|
|
<a name="4-4"></a>
|
|
|
|
|
### 4.4 更多推理部署
|
|
|
|
|
|
|
|
|
|
暂不支持
|
|
|
|
|
|
|
|
|
|
<a name="5"></a>
|
|
|
|
|
## 5. FAQ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## 引用
|
|
|
|
|
|
|
|
|
|
```bibtex
|
|
|
|
|
@article{Yu2020TowardsAS,
|
|
|
|
|
title={Towards Accurate Scene Text Recognition With Semantic Reasoning Networks},
|
|
|
|
|
author={Deli Yu and Xuan Li and Chengquan Zhang and Junyu Han and Jingtuo Liu and Errui Ding},
|
|
|
|
|
journal={2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
|
|
|
|
|
year={2020},
|
|
|
|
|
pages={12110-12119}
|
|
|
|
|
}
|
|
|
|
|
```
|