PaddleOCR/tools/infer/predict_rec.py

757 lines
31 KiB
Python
Raw Normal View History

2020-05-10 16:26:57 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2020-06-12 13:49:24 +08:00
import os
import sys
2021-09-13 21:10:10 +08:00
from PIL import Image
__dir__ = os.path.dirname(os.path.abspath(__file__))
2020-06-12 13:49:24 +08:00
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, "../..")))
2020-05-10 16:26:57 +08:00
os.environ["FLAGS_allocator_strategy"] = "auto_growth"
2020-12-22 15:57:21 +08:00
2020-05-10 16:26:57 +08:00
import cv2
import numpy as np
import math
import time
2020-12-02 15:55:28 +08:00
import traceback
2020-12-30 16:15:49 +08:00
import paddle
import tools.infer.utility as utility
2020-11-12 12:07:41 +08:00
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, check_and_read
2020-05-10 16:26:57 +08:00
2020-11-17 17:28:28 +08:00
logger = get_logger()
2020-05-10 16:26:57 +08:00
class TextRecognizer(object):
def __init__(self, args, logger=None):
if logger is None:
logger = get_logger()
self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
self.rec_batch_num = args.rec_batch_num
2020-06-03 17:38:44 +08:00
self.rec_algorithm = args.rec_algorithm
2020-11-12 12:07:41 +08:00
postprocess_params = {
"name": "CTCLabelDecode",
2020-07-07 14:13:13 +08:00
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char,
2020-06-30 11:18:49 +08:00
}
2020-12-30 16:15:49 +08:00
if self.rec_algorithm == "SRN":
postprocess_params = {
"name": "SRNLabelDecode",
2021-02-08 14:05:48 +08:00
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char,
2021-02-08 14:05:48 +08:00
}
elif self.rec_algorithm == "RARE":
postprocess_params = {
"name": "AttnLabelDecode",
2020-12-30 16:15:49 +08:00
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char,
2020-12-30 16:15:49 +08:00
}
elif self.rec_algorithm == "NRTR":
2021-09-13 21:10:10 +08:00
postprocess_params = {
"name": "NRTRLabelDecode",
2021-09-13 21:10:10 +08:00
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char,
2021-09-13 21:10:10 +08:00
}
2021-09-29 09:50:24 +08:00
elif self.rec_algorithm == "SAR":
postprocess_params = {
"name": "SARLabelDecode",
2021-09-29 09:50:24 +08:00
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char,
}
elif self.rec_algorithm == "VisionLAN":
postprocess_params = {
"name": "VLLabelDecode",
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char,
"max_text_length": args.max_text_length,
}
elif self.rec_algorithm == "ViTSTR":
postprocess_params = {
"name": "ViTSTRLabelDecode",
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char,
}
elif self.rec_algorithm == "ABINet":
postprocess_params = {
"name": "ABINetLabelDecode",
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char,
2022-05-22 13:16:52 +08:00
}
2022-06-12 13:53:29 +08:00
elif self.rec_algorithm == "SPIN":
postprocess_params = {
"name": "SPINLabelDecode",
2022-06-12 13:53:29 +08:00
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char,
2022-06-12 13:53:29 +08:00
}
2022-08-01 21:36:36 +08:00
elif self.rec_algorithm == "RobustScanner":
postprocess_params = {
"name": "SARLabelDecode",
2022-08-01 21:36:36 +08:00
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char,
"rm_symbol": True,
2022-08-01 21:36:36 +08:00
}
elif self.rec_algorithm == "RFL":
postprocess_params = {
"name": "RFLLabelDecode",
"character_dict_path": None,
"use_space_char": args.use_space_char,
}
elif self.rec_algorithm == "SATRN":
postprocess_params = {
"name": "SATRNLabelDecode",
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char,
"rm_symbol": True,
}
elif self.rec_algorithm in ["CPPD", "CPPDPadding"]:
postprocess_params = {
"name": "CPPDLabelDecode",
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char,
"rm_symbol": True,
}
2022-10-08 16:37:12 +08:00
elif self.rec_algorithm == "PREN":
postprocess_params = {"name": "PRENLabelDecode"}
2022-10-15 20:27:05 +08:00
elif self.rec_algorithm == "CAN":
self.inverse = args.rec_image_inverse
postprocess_params = {
"name": "CANLabelDecode",
2022-10-15 20:27:05 +08:00
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char,
2022-10-15 20:27:05 +08:00
}
Add new recognition method "ParseQ" (#10836) * Update PP-OCRv4_introduction.md * Update PP-OCRv4_introduction.md (#10616) * Update PP-OCRv4_introduction.md * Update PP-OCRv4_introduction.md * Update PP-OCRv4_introduction.md * Update README.md * Cherrypicking GH-10217 and GH-10216 to PaddlePaddle:Release/2.7 (#10655) * Don't break overall processing on a bad image * Add preprocessing common to OCR tasks Add preprocessing to options * Update requirements.txt (#10656) added missing pyyaml library * [TIPC]update xpu tipc script (#10658) * fix-typo (#10642) Co-authored-by: Dennis <dvorst@users.noreply.github.com> Co-authored-by: shiyutang <34859558+shiyutang@users.noreply.github.com> * 修改数据增强导致的DSR报错 (#10662) (#10681) * 修改数据增强导致的DSR报错 * 错误修改回滚 * Update algorithm_overview_en.md (#10670) Fixed simple spelling errors. * Implement recoginition method ParseQ * Document update for new recognition method ParseQ * add prediction for parseq * Update rec_vit_parseq.yml * Update rec_r31_sar.yml * Update rec_r31_sar.yml * Update rec_r50_fpn_srn.yml * Update rec_vit_parseq.py * Update rec_vit_parseq.yml * Update rec_parseq_head.py * Update rec_img_aug.py * Update rec_vit_parseq.yml * Update __init__.py * Update predict_rec.py * Update paddleocr.py * Update requirements.txt * Update utility.py * Update utility.py --------- Co-authored-by: xiaoting <31891223+tink2123@users.noreply.github.com> Co-authored-by: topduke <784990967@qq.com> Co-authored-by: dyning <dyning.2003@163.com> Co-authored-by: UserUnknownFactor <63057995+UserUnknownFactor@users.noreply.github.com> Co-authored-by: itasli <ilyas.tasli@outlook.fr> Co-authored-by: Kai Song <50285351+USTCKAY@users.noreply.github.com> Co-authored-by: dvorst <87502756+dvorst@users.noreply.github.com> Co-authored-by: Dennis <dvorst@users.noreply.github.com> Co-authored-by: shiyutang <34859558+shiyutang@users.noreply.github.com> Co-authored-by: Dec20B <1192152456@qq.com> Co-authored-by: ncoffman <51147417+ncoffman@users.noreply.github.com>
2023-09-07 16:36:47 +08:00
elif self.rec_algorithm == "ParseQ":
postprocess_params = {
"name": "ParseQLabelDecode",
Add new recognition method "ParseQ" (#10836) * Update PP-OCRv4_introduction.md * Update PP-OCRv4_introduction.md (#10616) * Update PP-OCRv4_introduction.md * Update PP-OCRv4_introduction.md * Update PP-OCRv4_introduction.md * Update README.md * Cherrypicking GH-10217 and GH-10216 to PaddlePaddle:Release/2.7 (#10655) * Don't break overall processing on a bad image * Add preprocessing common to OCR tasks Add preprocessing to options * Update requirements.txt (#10656) added missing pyyaml library * [TIPC]update xpu tipc script (#10658) * fix-typo (#10642) Co-authored-by: Dennis <dvorst@users.noreply.github.com> Co-authored-by: shiyutang <34859558+shiyutang@users.noreply.github.com> * 修改数据增强导致的DSR报错 (#10662) (#10681) * 修改数据增强导致的DSR报错 * 错误修改回滚 * Update algorithm_overview_en.md (#10670) Fixed simple spelling errors. * Implement recoginition method ParseQ * Document update for new recognition method ParseQ * add prediction for parseq * Update rec_vit_parseq.yml * Update rec_r31_sar.yml * Update rec_r31_sar.yml * Update rec_r50_fpn_srn.yml * Update rec_vit_parseq.py * Update rec_vit_parseq.yml * Update rec_parseq_head.py * Update rec_img_aug.py * Update rec_vit_parseq.yml * Update __init__.py * Update predict_rec.py * Update paddleocr.py * Update requirements.txt * Update utility.py * Update utility.py --------- Co-authored-by: xiaoting <31891223+tink2123@users.noreply.github.com> Co-authored-by: topduke <784990967@qq.com> Co-authored-by: dyning <dyning.2003@163.com> Co-authored-by: UserUnknownFactor <63057995+UserUnknownFactor@users.noreply.github.com> Co-authored-by: itasli <ilyas.tasli@outlook.fr> Co-authored-by: Kai Song <50285351+USTCKAY@users.noreply.github.com> Co-authored-by: dvorst <87502756+dvorst@users.noreply.github.com> Co-authored-by: Dennis <dvorst@users.noreply.github.com> Co-authored-by: shiyutang <34859558+shiyutang@users.noreply.github.com> Co-authored-by: Dec20B <1192152456@qq.com> Co-authored-by: ncoffman <51147417+ncoffman@users.noreply.github.com>
2023-09-07 16:36:47 +08:00
"character_dict_path": args.rec_char_dict_path,
"use_space_char": args.use_space_char,
Add new recognition method "ParseQ" (#10836) * Update PP-OCRv4_introduction.md * Update PP-OCRv4_introduction.md (#10616) * Update PP-OCRv4_introduction.md * Update PP-OCRv4_introduction.md * Update PP-OCRv4_introduction.md * Update README.md * Cherrypicking GH-10217 and GH-10216 to PaddlePaddle:Release/2.7 (#10655) * Don't break overall processing on a bad image * Add preprocessing common to OCR tasks Add preprocessing to options * Update requirements.txt (#10656) added missing pyyaml library * [TIPC]update xpu tipc script (#10658) * fix-typo (#10642) Co-authored-by: Dennis <dvorst@users.noreply.github.com> Co-authored-by: shiyutang <34859558+shiyutang@users.noreply.github.com> * 修改数据增强导致的DSR报错 (#10662) (#10681) * 修改数据增强导致的DSR报错 * 错误修改回滚 * Update algorithm_overview_en.md (#10670) Fixed simple spelling errors. * Implement recoginition method ParseQ * Document update for new recognition method ParseQ * add prediction for parseq * Update rec_vit_parseq.yml * Update rec_r31_sar.yml * Update rec_r31_sar.yml * Update rec_r50_fpn_srn.yml * Update rec_vit_parseq.py * Update rec_vit_parseq.yml * Update rec_parseq_head.py * Update rec_img_aug.py * Update rec_vit_parseq.yml * Update __init__.py * Update predict_rec.py * Update paddleocr.py * Update requirements.txt * Update utility.py * Update utility.py --------- Co-authored-by: xiaoting <31891223+tink2123@users.noreply.github.com> Co-authored-by: topduke <784990967@qq.com> Co-authored-by: dyning <dyning.2003@163.com> Co-authored-by: UserUnknownFactor <63057995+UserUnknownFactor@users.noreply.github.com> Co-authored-by: itasli <ilyas.tasli@outlook.fr> Co-authored-by: Kai Song <50285351+USTCKAY@users.noreply.github.com> Co-authored-by: dvorst <87502756+dvorst@users.noreply.github.com> Co-authored-by: Dennis <dvorst@users.noreply.github.com> Co-authored-by: shiyutang <34859558+shiyutang@users.noreply.github.com> Co-authored-by: Dec20B <1192152456@qq.com> Co-authored-by: ncoffman <51147417+ncoffman@users.noreply.github.com>
2023-09-07 16:36:47 +08:00
}
2020-11-12 12:07:41 +08:00
self.postprocess_op = build_post_process(postprocess_params)
self.postprocess_params = postprocess_params
(
self.predictor,
self.input_tensor,
self.output_tensors,
self.config,
) = utility.create_predictor(args, "rec", logger)
2021-07-06 13:11:27 +08:00
self.benchmark = args.benchmark
2021-11-08 16:40:53 +08:00
self.use_onnx = args.use_onnx
2021-07-06 13:11:27 +08:00
if args.benchmark:
import auto_log
2021-07-06 13:11:27 +08:00
pid = os.getpid()
2021-08-17 10:45:26 +08:00
gpu_id = utility.get_infer_gpuid()
2021-07-06 13:11:27 +08:00
self.autolog = auto_log.AutoLogger(
model_name="rec",
model_precision=args.precision,
2021-07-08 16:34:05 +08:00
batch_size=args.rec_batch_num,
2021-07-06 13:11:27 +08:00
data_shape="dynamic",
save_path=None, # not used if logger is not None
2021-07-06 13:11:27 +08:00
inference_config=self.config,
pids=pid,
process_name=None,
2021-08-17 10:45:26 +08:00
gpu_ids=gpu_id if args.use_gpu else None,
time_keys=["preprocess_time", "inference_time", "postprocess_time"],
2021-11-24 12:03:24 +08:00
warmup=0,
logger=logger,
)
self.return_word_box = args.return_word_box
2020-05-10 16:26:57 +08:00
def resize_norm_img(self, img, max_wh_ratio):
2020-05-10 16:26:57 +08:00
imgC, imgH, imgW = self.rec_image_shape
if self.rec_algorithm == "NRTR" or self.rec_algorithm == "ViTSTR":
2021-09-13 21:10:10 +08:00
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# return padding_im
image_pil = Image.fromarray(np.uint8(img))
if self.rec_algorithm == "ViTSTR":
img = image_pil.resize([imgW, imgH], Image.BICUBIC)
else:
2023-08-10 16:41:35 +08:00
img = image_pil.resize([imgW, imgH], Image.Resampling.LANCZOS)
2021-09-13 21:10:10 +08:00
img = np.array(img)
norm_img = np.expand_dims(img, -1)
norm_img = norm_img.transpose((2, 0, 1))
if self.rec_algorithm == "ViTSTR":
norm_img = norm_img.astype(np.float32) / 255.0
else:
norm_img = norm_img.astype(np.float32) / 128.0 - 1.0
return norm_img
elif self.rec_algorithm == "RFL":
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
resized_image = cv2.resize(img, (imgW, imgH), interpolation=cv2.INTER_CUBIC)
resized_image = resized_image.astype("float32")
resized_image = resized_image / 255
resized_image = resized_image[np.newaxis, :]
resized_image -= 0.5
resized_image /= 0.5
return resized_image
2021-09-13 21:10:10 +08:00
assert imgC == img.shape[2]
imgW = int((imgH * max_wh_ratio))
2021-11-08 16:40:53 +08:00
if self.use_onnx:
w = self.input_tensor.shape[3:][0]
2023-01-10 10:48:42 +08:00
if isinstance(w, str):
pass
elif w is not None and w > 0:
imgW = w
h, w = img.shape[:2]
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
if self.rec_algorithm == "RARE":
2022-04-12 21:03:51 +08:00
if resized_w > self.rec_image_shape[2]:
resized_w = self.rec_image_shape[2]
imgW = self.rec_image_shape[2]
2020-06-30 11:18:49 +08:00
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype("float32")
2020-05-10 16:26:57 +08:00
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
return padding_im
2022-05-09 20:44:01 +08:00
def resize_norm_img_vl(self, img, image_shape):
imgC, imgH, imgW = image_shape
img = img[:, :, ::-1] # bgr2rgb
resized_image = cv2.resize(img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
resized_image = resized_image.astype("float32")
resized_image = resized_image.transpose((2, 0, 1)) / 255
return resized_image
2020-12-30 16:15:49 +08:00
def resize_norm_img_srn(self, img, image_shape):
imgC, imgH, imgW = image_shape
img_black = np.zeros((imgH, imgW))
im_hei = img.shape[0]
im_wid = img.shape[1]
if im_wid <= im_hei * 1:
img_new = cv2.resize(img, (imgH * 1, imgH))
elif im_wid <= im_hei * 2:
img_new = cv2.resize(img, (imgH * 2, imgH))
elif im_wid <= im_hei * 3:
img_new = cv2.resize(img, (imgH * 3, imgH))
else:
img_new = cv2.resize(img, (imgW, imgH))
img_np = np.asarray(img_new)
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
img_black[:, 0 : img_np.shape[1]] = img_np
2020-12-30 16:15:49 +08:00
img_black = img_black[:, :, np.newaxis]
row, col, c = img_black.shape
c = 1
return np.reshape(img_black, (c, row, col)).astype(np.float32)
def srn_other_inputs(self, image_shape, num_heads, max_text_length):
imgC, imgH, imgW = image_shape
feature_dim = int((imgH / 8) * (imgW / 8))
encoder_word_pos = (
np.array(range(0, feature_dim)).reshape((feature_dim, 1)).astype("int64")
)
gsrm_word_pos = (
np.array(range(0, max_text_length))
.reshape((max_text_length, 1))
.astype("int64")
)
2020-12-30 16:15:49 +08:00
gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
[-1, 1, max_text_length, max_text_length]
)
gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1, [1, num_heads, 1, 1]).astype(
"float32"
) * [-1e9]
2020-12-30 16:15:49 +08:00
gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
[-1, 1, max_text_length, max_text_length]
)
gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2, [1, num_heads, 1, 1]).astype(
"float32"
) * [-1e9]
2020-12-30 16:15:49 +08:00
encoder_word_pos = encoder_word_pos[np.newaxis, :]
gsrm_word_pos = gsrm_word_pos[np.newaxis, :]
return [
encoder_word_pos,
gsrm_word_pos,
gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2,
2020-12-30 16:15:49 +08:00
]
def process_image_srn(self, img, image_shape, num_heads, max_text_length):
norm_img = self.resize_norm_img_srn(img, image_shape)
norm_img = norm_img[np.newaxis, :]
[
encoder_word_pos,
gsrm_word_pos,
gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2,
] = self.srn_other_inputs(image_shape, num_heads, max_text_length)
2020-12-30 16:15:49 +08:00
gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
encoder_word_pos = encoder_word_pos.astype(np.int64)
gsrm_word_pos = gsrm_word_pos.astype(np.int64)
return (
norm_img,
encoder_word_pos,
gsrm_word_pos,
gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2,
)
2020-12-30 16:15:49 +08:00
def resize_norm_img_sar(self, img, image_shape, width_downsample_ratio=0.25):
2021-09-29 09:50:24 +08:00
imgC, imgH, imgW_min, imgW_max = image_shape
h = img.shape[0]
w = img.shape[1]
valid_ratio = 1.0
# make sure new_width is an integral multiple of width_divisor.
width_divisor = int(1 / width_downsample_ratio)
# resize
ratio = w / float(h)
resize_w = math.ceil(imgH * ratio)
if resize_w % width_divisor != 0:
resize_w = round(resize_w / width_divisor) * width_divisor
if imgW_min is not None:
resize_w = max(imgW_min, resize_w)
if imgW_max is not None:
valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
resize_w = min(imgW_max, resize_w)
resized_image = cv2.resize(img, (resize_w, imgH))
resized_image = resized_image.astype("float32")
# norm
2021-09-29 09:50:24 +08:00
if image_shape[0] == 1:
resized_image = resized_image / 255
resized_image = resized_image[np.newaxis, :]
else:
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
resize_shape = resized_image.shape
padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
padding_im[:, :, 0:resize_w] = resized_image
pad_shape = padding_im.shape
return padding_im, resize_shape, pad_shape, valid_ratio
2022-06-12 13:53:29 +08:00
def resize_norm_img_spin(self, img):
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# return padding_im
img = cv2.resize(img, tuple([100, 32]), cv2.INTER_CUBIC)
img = np.array(img, np.float32)
img = np.expand_dims(img, -1)
img = img.transpose((2, 0, 1))
mean = [127.5]
std = [127.5]
mean = np.array(mean, dtype=np.float32)
std = np.array(std, dtype=np.float32)
mean = np.float32(mean.reshape(1, -1))
stdinv = 1 / np.float32(std.reshape(1, -1))
img -= mean
img *= stdinv
return img
def resize_norm_img_svtr(self, img, image_shape):
imgC, imgH, imgW = image_shape
resized_image = cv2.resize(img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
resized_image = resized_image.astype("float32")
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
return resized_image
def resize_norm_img_cppd_padding(
self, img, image_shape, padding=True, interpolation=cv2.INTER_LINEAR
):
imgC, imgH, imgW = image_shape
h = img.shape[0]
w = img.shape[1]
if not padding:
resized_image = cv2.resize(img, (imgW, imgH), interpolation=interpolation)
resized_w = imgW
else:
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype("float32")
if image_shape[0] == 1:
resized_image = resized_image / 255
resized_image = resized_image[np.newaxis, :]
else:
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
return padding_im
def resize_norm_img_abinet(self, img, image_shape):
imgC, imgH, imgW = image_shape
resized_image = cv2.resize(img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
resized_image = resized_image.astype("float32")
resized_image = resized_image / 255.0
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
resized_image = (resized_image - mean[None, None, ...]) / std[None, None, ...]
resized_image = resized_image.transpose((2, 0, 1))
resized_image = resized_image.astype("float32")
return resized_image
2022-10-15 20:27:05 +08:00
def norm_img_can(self, img, image_shape):
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # CAN only predict gray scale image
2022-10-15 20:27:05 +08:00
if self.inverse:
img = 255 - img
if self.rec_image_shape[0] == 1:
h, w = img.shape
_, imgH, imgW = self.rec_image_shape
if h < imgH or w < imgW:
padding_h = max(imgH - h, 0)
padding_w = max(imgW - w, 0)
img_padded = np.pad(
img,
((0, padding_h), (0, padding_w)),
"constant",
constant_values=(255),
)
2022-10-15 20:27:05 +08:00
img = img_padded
img = np.expand_dims(img, 0) / 255.0 # h,w,c -> c,h,w
img = img.astype("float32")
2022-10-15 20:27:05 +08:00
return img
2020-05-10 16:26:57 +08:00
def __call__(self, img_list):
img_num = len(img_list)
# Calculate the aspect ratio of all text bars
width_list = []
for img in img_list:
width_list.append(img.shape[1] / float(img.shape[0]))
2020-06-27 23:29:29 +08:00
# Sorting can speed up the recognition process
indices = np.argsort(np.array(width_list))
rec_res = [["", 0.0]] * img_num
batch_num = self.rec_batch_num
2021-06-28 13:47:25 +08:00
st = time.time()
2021-07-06 13:11:27 +08:00
if self.benchmark:
self.autolog.times.start()
2020-05-10 16:26:57 +08:00
for beg_img_no in range(0, img_num, batch_num):
end_img_no = min(img_num, beg_img_no + batch_num)
norm_img_batch = []
2022-08-23 18:05:03 +08:00
if self.rec_algorithm == "SRN":
encoder_word_pos_list = []
gsrm_word_pos_list = []
gsrm_slf_attn_bias1_list = []
gsrm_slf_attn_bias2_list = []
if self.rec_algorithm == "SAR":
valid_ratios = []
2022-08-15 11:40:29 +08:00
imgC, imgH, imgW = self.rec_image_shape[:3]
max_wh_ratio = imgW / imgH
wh_ratio_list = []
2020-05-10 16:26:57 +08:00
for ino in range(beg_img_no, end_img_no):
h, w = img_list[indices[ino]].shape[0:2]
wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio)
wh_ratio_list.append(wh_ratio)
for ino in range(beg_img_no, end_img_no):
2022-04-26 18:30:26 +08:00
if self.rec_algorithm == "SAR":
2021-09-29 09:50:24 +08:00
norm_img, _, _, valid_ratio = self.resize_norm_img_sar(
img_list[indices[ino]], self.rec_image_shape
)
2021-09-29 09:50:24 +08:00
norm_img = norm_img[np.newaxis, :]
valid_ratio = np.expand_dims(valid_ratio, axis=0)
valid_ratios.append(valid_ratio)
norm_img_batch.append(norm_img)
2022-04-26 18:30:26 +08:00
elif self.rec_algorithm == "SRN":
2021-05-26 18:40:16 +08:00
norm_img = self.process_image_srn(
img_list[indices[ino]], self.rec_image_shape, 8, 25
)
2020-12-30 16:15:49 +08:00
encoder_word_pos_list.append(norm_img[1])
gsrm_word_pos_list.append(norm_img[2])
gsrm_slf_attn_bias1_list.append(norm_img[3])
gsrm_slf_attn_bias2_list.append(norm_img[4])
norm_img_batch.append(norm_img[0])
elif self.rec_algorithm in ["SVTR", "SATRN", "ParseQ", "CPPD"]:
norm_img = self.resize_norm_img_svtr(
img_list[indices[ino]], self.rec_image_shape
)
2022-04-26 18:30:26 +08:00
norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img)
elif self.rec_algorithm in ["CPPDPadding"]:
norm_img = self.resize_norm_img_cppd_padding(
img_list[indices[ino]], self.rec_image_shape
)
norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img)
2022-10-08 16:37:12 +08:00
elif self.rec_algorithm in ["VisionLAN", "PREN"]:
norm_img = self.resize_norm_img_vl(
img_list[indices[ino]], self.rec_image_shape
)
norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img)
elif self.rec_algorithm == "SPIN":
2022-06-12 13:53:29 +08:00
norm_img = self.resize_norm_img_spin(img_list[indices[ino]])
2022-07-10 11:47:25 +08:00
norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img)
elif self.rec_algorithm == "ABINet":
norm_img = self.resize_norm_img_abinet(
img_list[indices[ino]], self.rec_image_shape
)
norm_img = norm_img[np.newaxis, :]
2022-04-26 18:30:26 +08:00
norm_img_batch.append(norm_img)
2022-05-22 13:16:52 +08:00
elif self.rec_algorithm == "RobustScanner":
norm_img, _, _, valid_ratio = self.resize_norm_img_sar(
img_list[indices[ino]],
self.rec_image_shape,
width_downsample_ratio=0.25,
)
2022-05-22 13:16:52 +08:00
norm_img = norm_img[np.newaxis, :]
valid_ratio = np.expand_dims(valid_ratio, axis=0)
valid_ratios = []
valid_ratios.append(valid_ratio)
norm_img_batch.append(norm_img)
word_positions_list = []
word_positions = np.array(range(0, 40)).astype("int64")
2022-05-22 13:16:52 +08:00
word_positions = np.expand_dims(word_positions, axis=0)
word_positions_list.append(word_positions)
2022-10-15 20:27:05 +08:00
elif self.rec_algorithm == "CAN":
norm_img = self.norm_img_can(img_list[indices[ino]], max_wh_ratio)
2022-10-15 20:27:05 +08:00
norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img)
norm_image_mask = np.ones(norm_img.shape, dtype="float32")
word_label = np.ones([1, 36], dtype="int64")
2022-10-15 20:27:05 +08:00
norm_img_mask_batch = []
word_label_list = []
norm_img_mask_batch.append(norm_image_mask)
word_label_list.append(word_label)
2022-04-26 18:30:26 +08:00
else:
norm_img = self.resize_norm_img(
img_list[indices[ino]], max_wh_ratio
)
2022-04-26 18:30:26 +08:00
norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img)
2020-05-10 16:26:57 +08:00
norm_img_batch = np.concatenate(norm_img_batch)
norm_img_batch = norm_img_batch.copy()
2021-07-06 13:11:27 +08:00
if self.benchmark:
self.autolog.times.stamp()
2020-12-30 16:15:49 +08:00
if self.rec_algorithm == "SRN":
encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
gsrm_slf_attn_bias1_list = np.concatenate(gsrm_slf_attn_bias1_list)
gsrm_slf_attn_bias2_list = np.concatenate(gsrm_slf_attn_bias2_list)
2020-12-30 16:15:49 +08:00
inputs = [
norm_img_batch,
encoder_word_pos_list,
gsrm_word_pos_list,
gsrm_slf_attn_bias1_list,
gsrm_slf_attn_bias2_list,
]
2021-11-08 16:40:53 +08:00
if self.use_onnx:
input_dict = {}
input_dict[self.input_tensor.name] = norm_img_batch
outputs = self.predictor.run(self.output_tensors, input_dict)
2021-11-08 16:40:53 +08:00
preds = {"predict": outputs[2]}
else:
input_names = self.predictor.get_input_names()
for i in range(len(input_names)):
input_tensor = self.predictor.get_input_handle(input_names[i])
2021-11-08 16:40:53 +08:00
input_tensor.copy_from_cpu(inputs[i])
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.benchmark:
self.autolog.times.stamp()
preds = {"predict": outputs[2]}
2021-09-29 09:50:24 +08:00
elif self.rec_algorithm == "SAR":
valid_ratios = np.concatenate(valid_ratios)
inputs = [
norm_img_batch,
np.array([valid_ratios], dtype=np.float32).T,
2021-09-29 09:50:24 +08:00
]
2021-11-08 16:40:53 +08:00
if self.use_onnx:
input_dict = {}
input_dict[self.input_tensor.name] = norm_img_batch
outputs = self.predictor.run(self.output_tensors, input_dict)
2021-11-08 16:40:53 +08:00
preds = outputs[0]
2021-09-13 21:10:10 +08:00
else:
2021-11-08 16:40:53 +08:00
input_names = self.predictor.get_input_names()
for i in range(len(input_names)):
input_tensor = self.predictor.get_input_handle(input_names[i])
2022-05-22 13:16:52 +08:00
input_tensor.copy_from_cpu(inputs[i])
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.benchmark:
self.autolog.times.stamp()
preds = outputs[0]
elif self.rec_algorithm == "RobustScanner":
valid_ratios = np.concatenate(valid_ratios)
word_positions_list = np.concatenate(word_positions_list)
inputs = [norm_img_batch, valid_ratios, word_positions_list]
2022-05-22 13:16:52 +08:00
if self.use_onnx:
input_dict = {}
input_dict[self.input_tensor.name] = norm_img_batch
outputs = self.predictor.run(self.output_tensors, input_dict)
2022-05-22 13:16:52 +08:00
preds = outputs[0]
else:
input_names = self.predictor.get_input_names()
for i in range(len(input_names)):
input_tensor = self.predictor.get_input_handle(input_names[i])
2021-11-08 16:40:53 +08:00
input_tensor.copy_from_cpu(inputs[i])
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.benchmark:
self.autolog.times.stamp()
2021-09-13 21:10:10 +08:00
preds = outputs[0]
2022-10-15 20:27:05 +08:00
elif self.rec_algorithm == "CAN":
norm_img_mask_batch = np.concatenate(norm_img_mask_batch)
word_label_list = np.concatenate(word_label_list)
inputs = [norm_img_batch, norm_img_mask_batch, word_label_list]
if self.use_onnx:
input_dict = {}
input_dict[self.input_tensor.name] = norm_img_batch
outputs = self.predictor.run(self.output_tensors, input_dict)
2022-10-15 20:27:05 +08:00
preds = outputs
else:
input_names = self.predictor.get_input_names()
input_tensor = []
for i in range(len(input_names)):
input_tensor_i = self.predictor.get_input_handle(input_names[i])
2022-10-15 20:27:05 +08:00
input_tensor_i.copy_from_cpu(inputs[i])
input_tensor.append(input_tensor_i)
self.input_tensor = input_tensor
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.benchmark:
self.autolog.times.stamp()
preds = outputs
2021-11-08 16:40:53 +08:00
else:
if self.use_onnx:
input_dict = {}
input_dict[self.input_tensor.name] = norm_img_batch
outputs = self.predictor.run(self.output_tensors, input_dict)
2021-11-08 16:40:53 +08:00
preds = outputs[0]
else:
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.benchmark:
self.autolog.times.stamp()
if len(outputs) != 1:
preds = outputs
else:
preds = outputs[0]
if self.postprocess_params["name"] == "CTCLabelDecode":
rec_result = self.postprocess_op(
preds,
return_word_box=self.return_word_box,
wh_ratio_list=wh_ratio_list,
max_wh_ratio=max_wh_ratio,
)
else:
rec_result = self.postprocess_op(preds)
2020-11-17 17:28:28 +08:00
for rno in range(len(rec_result)):
rec_res[indices[beg_img_no + rno]] = rec_result[rno]
2021-07-06 13:11:27 +08:00
if self.benchmark:
self.autolog.times.end(stamp=True)
2021-06-28 13:47:25 +08:00
return rec_res, time.time() - st
2020-05-10 16:26:57 +08:00
def main(args):
2020-05-15 22:07:18 +08:00
image_file_list = get_image_file_list(args.image_dir)
2020-05-10 16:26:57 +08:00
valid_image_file_list = []
img_list = []
2021-05-26 18:40:16 +08:00
# logger
log_file = args.save_log_path
if os.path.is_dir(args.save_log_path) or (
not os.path.exists(args.save_log_path) and args.save_log_path.endswith("/")
):
log_file = os.path.join(log_file, "benchmark_recognition.log")
logger = get_logger(log_file=log_file)
# create text recognizer
text_recognizer = TextRecognizer(args)
2022-05-09 20:44:01 +08:00
logger.info(
"In PP-OCRv3, rec_image_shape parameter defaults to '3, 48, 320', "
2022-05-09 20:51:21 +08:00
"if you are using recognition model with PP-OCRv2 or an older version, please set --rec_image_shape='3,32,320"
2022-05-09 20:44:01 +08:00
)
# warmup 2 times
2021-06-09 13:27:13 +08:00
if args.warmup:
2022-05-09 20:44:01 +08:00
img = np.random.uniform(0, 255, [48, 320, 3]).astype(np.uint8)
for i in range(2):
2021-08-23 17:13:22 +08:00
res = text_recognizer([img] * int(args.rec_batch_num))
2021-06-09 13:27:13 +08:00
2021-05-26 18:40:16 +08:00
for image_file in image_file_list:
img, flag, _ = check_and_read(image_file)
2020-07-28 11:18:48 +08:00
if not flag:
img = cv2.imread(image_file)
2020-05-10 16:26:57 +08:00
if img is None:
logger.info("error in loading image:{}".format(image_file))
continue
valid_image_file_list.append(image_file)
img_list.append(img)
2021-05-26 18:40:16 +08:00
try:
rec_res, _ = text_recognizer(img_list)
except Exception as E:
logger.info(traceback.format_exc())
logger.info(E)
exit()
for ino in range(len(img_list)):
logger.info(
"Predicts of {}:{}".format(valid_image_file_list[ino], rec_res[ino])
)
2021-07-06 13:11:27 +08:00
if args.benchmark:
text_recognizer.autolog.report()
if __name__ == "__main__":
main(utility.parse_args())