PaddleOCR/deploy/hubserving/readme_en.md

250 lines
13 KiB
Markdown
Raw Normal View History

2020-12-01 17:46:50 +08:00
English | [简体中文](readme.md)
2022-03-30 19:07:07 +08:00
- [Service deployment based on PaddleHub Serving](#service-deployment-based-on-paddlehub-serving)
2022-03-30 22:46:35 +08:00
- [1. Update](#1-update)
- [2. Quick start service](#2-quick-start-service)
- [2.1 Install PaddleHub](#21-install-paddlehub)
2022-03-30 22:46:35 +08:00
- [2.2 Download inference model](#22-download-inference-model)
- [2.3 Install Service Module](#23-install-service-module)
- [2.4 Start service](#24-start-service)
- [2.4.1 Start with command line parameters (CPU only)](#241-start-with-command-line-parameters-cpu-only)
- [2.4.2 Start with configuration fileCPU and GPU](#242-start-with-configuration-filecpugpu)
2022-03-30 22:46:35 +08:00
- [3. Send prediction requests](#3-send-prediction-requests)
- [4. Returned result format](#4-returned-result-format)
- [5. User-defined service module modification](#5-user-defined-service-module-modification)
2022-03-30 19:07:07 +08:00
2020-12-01 17:46:50 +08:00
PaddleOCR provides 2 service deployment methods:
- Based on **PaddleHub Serving**: Code path is `./deploy/hubserving`. Please follow this tutorial.
- Based on **PaddleServing**: Code path is `./deploy/pdserving`. Please refer to the [tutorial](../../deploy/pdserving/README.md) for usage.
2020-12-01 17:46:50 +08:00
# Service deployment based on PaddleHub Serving
2020-12-01 17:46:50 +08:00
The hubserving service deployment directory includes seven service packages: text detection, text angle class, text recognition, text detection+text angle class+text recognition three-stage series connection, layout analysis, table recognition, and PP-Structure. Please select the corresponding service package to install and start the service according to your needs. The directory is as follows:
2020-12-01 17:46:50 +08:00
```
deploy/hubserving/
2022-03-30 19:24:45 +08:00
└─ ocr_det text detection module service package
└─ ocr_cls text angle class module service package
└─ ocr_rec text recognition module service package
2022-03-31 11:34:46 +08:00
└─ ocr_system text detection+text angle class+text recognition three-stage series connection service package
2022-08-23 23:28:49 +08:00
└─ structure_layout layout analysis service package
2022-03-30 19:24:45 +08:00
└─ structure_table table recognition service package
2022-03-30 22:15:12 +08:00
└─ structure_system PP-Structure service package
└─ kie_ser KIE(SER) service package
└─ kie_ser_re KIE(SER+RE) service package
2020-12-01 17:46:50 +08:00
```
Each service pack contains 3 files. Take the 2-stage series connection service package as an example, the directory is as follows:
2020-12-01 17:46:50 +08:00
```
deploy/hubserving/ocr_system/
└─ __init__.py Empty file, required
└─ config.json Configuration file, optional, passed in as a parameter when using configuration to start the service
└─ module.py Main module file, required, contains the complete logic of the service
└─ params.py Parameter file, required, including parameters such as model path, pre and post-processing parameters
2020-12-01 17:46:50 +08:00
```
2022-03-30 22:46:35 +08:00
## 1. Update
2020-12-01 17:46:50 +08:00
* 2022.10.09 add KIE services.
* 2022.08.23 add layout analysis services.
* 2022.03.30 add PP-Structure and table recognition services.
* 2022.05.05 add PP-OCRv3 text detection and recognition services.
2022-03-30 22:46:35 +08:00
## 2. Quick start service
2020-12-01 17:46:50 +08:00
The following steps take the 2-stage series service as an example. If only the detection service or recognition service is needed, replace the corresponding file path.
### 2.1 Install PaddleHub
```bash
pip3 install paddlehub==2.1.0 --upgrade
2020-12-01 17:46:50 +08:00
```
2022-03-30 22:46:35 +08:00
### 2.2 Download inference model
Before installing the service module, you need to prepare the inference model and put it in the correct path. By default, the PP-OCRv3 models are used, and the default model path is:
| Model | Path |
| ------- | - |
| text detection model | ./inference/ch_PP-OCRv3_det_infer/ |
| text recognition model | ./inference/ch_PP-OCRv3_rec_infer/ |
| text angle classifier | ./inference/ch_ppocr_mobile_v2.0_cls_infer/ |
| layout parse model | ./inference/picodet_lcnet_x1_0_fgd_layout_infer/ |
| tanle recognition | ./inference/ch_ppstructure_mobile_v2.0_SLANet_infer/ |
| KIE(SER) | ./inference/ser_vi_layoutxlm_xfund_infer/ |
| KIE(SER+RE) | ./inference/re_vi_layoutxlm_xfund_infer/ |
**The model path can be found and modified in `params.py`.**
More models provided by PaddleOCR can be obtained from the [model library](../../doc/doc_en/models_list_en.md). You can also use models trained by yourself.
2020-12-01 17:46:50 +08:00
2022-03-30 22:46:35 +08:00
### 2.3 Install Service Module
2022-03-30 19:24:45 +08:00
PaddleOCR provides 5 kinds of service modules, install the required modules according to your needs.
2020-12-01 17:46:50 +08:00
* On the Linux platform(replace `/` with `\` if using Windows), the examples are as the following table:
| Service model | Command |
| text detection | `hub install deploy/hubserving/ocr_det` |
| text angle class: | `hub install deploy/hubserving/ocr_cls` |
| text recognition: | `hub install deploy/hubserving/ocr_rec` |
| 2-stage series: | `hub install deploy/hubserving/ocr_system` |
| table recognition | `hub install deploy/hubserving/structure_table` |
| PP-Structure | `hub install deploy/hubserving/structure_system` |
| KIE(SER) | `hub install deploy/hubserving/kie_ser` |
| KIE(SER+RE) | `hub install deploy/hubserving/kie_ser_re` |
2020-12-01 17:46:50 +08:00
2022-03-30 22:46:35 +08:00
### 2.4 Start service
#### 2.4.1 Start with command line parameters (CPU only)
**start command:**
```bash
hub serving start --modules Module1==Version1, Module2==Version2, ... \
--port 8866 \
--use_multiprocess \
--workers \
```
**Parameters:**
|parameters|usage|
|---|---|
|`--modules`/`-m`|PaddleHub Serving pre-installed model, listed in the form of multiple Module==Version key-value pairs<br>**When Version is not specified, the latest version is selected by default**|
|`--port`/`-p`|Service port, default is 8866|
|`--use_multiprocess`|Enable concurrent mode, by default using the single-process mode, this mode is recommended for multi-core CPU machines<br>**Windows operating system only supports single-process mode**|
|`--workers`|The number of concurrent tasks specified in concurrent mode, the default is `2*cpu_count-1`, where `cpu_count` is the number of CPU cores|
2020-12-01 17:46:50 +08:00
For example, start the 2-stage series service:
```bash
2020-12-01 17:46:50 +08:00
hub serving start -m ocr_system
```
2020-12-01 17:46:50 +08:00
This completes the deployment of a service API, using the default port number 8866.
2020-12-01 17:46:50 +08:00
#### 2.4.2 Start with configuration fileCPU and GPU
**start command:**
```bash
2020-12-01 17:46:50 +08:00
hub serving start --config/-c config.json
```
In which the format of `config.json` is as follows:
```json
2020-12-01 17:46:50 +08:00
{
"modules_info": {
"ocr_system": {
"init_args": {
"version": "1.0.0",
"use_gpu": true
},
"predict_args": {
}
}
},
"port": 8868,
"use_multiprocess": false,
"workers": 2
}
```
- The configurable parameters in `init_args` are consistent with the `_initialize` function interface in `module.py`.
**When `use_gpu` is `true`, it means that the GPU is used to start the service**.
2020-12-01 17:46:50 +08:00
- The configurable parameters in `predict_args` are consistent with the `predict` function interface in `module.py`.
**Note:**
- When using the configuration file to start the service, other parameters will be ignored.
- If you use GPU prediction (that is, `use_gpu` is set to `true`), you need to set the environment variable CUDA_VISIBLE_DEVICES before starting the service, such as:
```bash
export CUDA_VISIBLE_DEVICES=0
```
- **`use_gpu` and `use_multiprocess` cannot be `true` at the same time.**
2020-12-01 17:46:50 +08:00
For example, use GPU card No. 3 to start the 2-stage series service:
```bash
2020-12-01 17:46:50 +08:00
export CUDA_VISIBLE_DEVICES=3
hub serving start -c deploy/hubserving/ocr_system/config.json
```
2020-12-01 17:46:50 +08:00
2022-03-30 22:46:35 +08:00
## 3. Send prediction requests
After the service starts, you can use the following command to send a prediction request to obtain the prediction result:
```bash
2022-08-10 22:15:52 +08:00
python tools/test_hubserving.py --server_url=server_url --image_dir=image_path
```
2020-12-01 17:46:50 +08:00
Two parameters need to be passed to the script:
- **server_url**:service address, the format of which is
`http://[ip_address]:[port]/predict/[module_name]`
For example, if using the configuration file to start the text angle classification, text detection, text recognition, detection+classification+recognition 3 stages, table recognition and PP-Structure service,
also modified the port for each service, then the `server_url` to send the request will be:
```
http://127.0.0.1:8865/predict/ocr_det
http://127.0.0.1:8866/predict/ocr_cls
http://127.0.0.1:8867/predict/ocr_rec
http://127.0.0.1:8868/predict/ocr_system
http://127.0.0.1:8869/predict/structure_table
http://127.0.0.1:8870/predict/structure_system
http://127.0.0.1:8870/predict/structure_layout
http://127.0.0.1:8871/predict/kie_ser
http://127.0.0.1:8872/predict/kie_ser_re
```
- **image_dir**:Test image path, which can be a single image path or an image directory path
- **visualize**:Whether to visualize the results, the default value is False
- **output**:The folder to save the Visualization result, the default value is `./hubserving_result`
Example:
```bash
2022-04-08 16:00:13 +08:00
python tools/test_hubserving.py --server_url=http://127.0.0.1:8868/predict/ocr_system --image_dir=./doc/imgs/ --visualize=false`
2020-12-01 17:46:50 +08:00
```
2022-03-30 22:46:35 +08:00
## 4. Returned result format
The returned result is a list. Each item in the list is a dictionary which may contain three fields. The information is as follows:
2020-12-01 17:46:50 +08:00
|field name|data type|description|
|----|----|----|
|angle|str|angle|
|text|str|text content|
|confidence|float|text recognition confidence|
|text_region|list|text location coordinates|
|html|str|table HTML string|
|regions|list|The result of layout analysis + table recognition + OCR, each item is a list<br>including `bbox` indicating area coordinates, `type` of area type and `res` of area results|
2022-08-23 16:11:18 +08:00
|layout|list|The result of layout analysis, each item is a dict, including `bbox` indicating area coordinates, `label` of area type|
2020-12-01 17:46:50 +08:00
The fields returned by different modules are different. For example, the results returned by the text recognition service module do not contain `text_region`, detailed table is as follows:
2020-12-01 17:46:50 +08:00
|field name/module name |ocr_det |ocr_cls |ocr_rec |ocr_system |structure_table |structure_system |structure_layout |kie_ser |kie_re |
|--- |--- |--- |--- |--- |--- |--- |--- |--- |--- |
|angle | |✔ | |✔ | | | |
|text | | |✔ |✔ | |✔ | |✔ |✔ |
|confidence | |✔ |✔ |✔ | |✔ | |✔ |✔ |
|text_region |✔ | | |✔ | |✔ | |✔ |✔ |
|html | | | | |✔ |✔ | | | |
|regions | | | | |✔ |✔ | | | |
|layout | | | | | | |✔ | | |
|ser_res | | | | | | | |✔ | |
|re_res | | | | | | | | |✔ |
2020-12-01 17:46:50 +08:00
**Note:** If you need to add, delete or modify the returned fields, you can modify the file `module.py` of the corresponding module. For the complete process, refer to the user-defined modification service module in the next section.
2020-12-01 17:46:50 +08:00
## 5. User-defined service module modification
If you need to modify the service logic, the following steps are generally required (take the modification of `deploy/hubserving/ocr_system` for example):
2020-12-01 17:46:50 +08:00
1. Stop service:
```bash
2020-12-01 17:46:50 +08:00
hub serving stop --port/-p XXXX
```
2. Modify the code in the corresponding files under `deploy/hubserving/ocr_system`, such as `module.py` and `params.py`, to your actual needs.
For example, if you need to replace the model used by the deployed service, you need to modify model path parameters `det_model_dir` and `rec_model_dir` in `params.py`. If you want to turn off the text direction classifier, set the parameter `use_angle_cls` to `False`.
Of course, other related parameters may need to be modified at the same time. Please modify and debug according to the actual situation.
**It is suggested to run `module.py` directly for debugging after modification before starting the service test.**
**Note** The image input shape used by the PPOCR-v3 recognition model is `3, 48, 320`, so you need to modify `cfg.rec_image_shape = "3, 48, 320"` in `params.py`, if you do not use the PPOCR-v3 recognition model, then there is no need to modify this parameter.
3. (Optional) If you want to rename the module, the following lines should be modified:
- [`ocr_system` within `from deploy.hubserving.ocr_system.params import read_params`](https://github.com/PaddlePaddle/PaddleOCR/blob/a923f35de57b5e378f8dd16e54d0a3e4f51267fd/deploy/hubserving/ocr_system/module.py#L35)
- [`ocr_system` within `name="ocr_system",`](https://github.com/PaddlePaddle/PaddleOCR/blob/a923f35de57b5e378f8dd16e54d0a3e4f51267fd/deploy/hubserving/ocr_system/module.py#L39)
4. (Optional) It may require you to delete the directory `__pycache__` to force flush build cache of CPython:
```bash
find deploy/hubserving/ocr_system -name '__pycache__' -exec rm -r {} \;
```
5. Install modified service module:
```bash
hub install deploy/hubserving/ocr_system/
```
6. Restart service:
```bash
hub serving start -m ocr_system
```