2022-02-14 14:13:02 +08:00
|
|
|
|
# PP-Structure 系列模型列表
|
|
|
|
|
|
2022-07-01 16:55:04 +08:00
|
|
|
|
- [1. 版面分析模型](#1-版面分析模型)
|
|
|
|
|
- [2. OCR和表格识别模型](#2-ocr和表格识别模型)
|
|
|
|
|
- [2.1 OCR](#21-ocr)
|
|
|
|
|
- [2.2 表格识别模型](#22-表格识别模型)
|
2022-08-15 18:05:21 +08:00
|
|
|
|
- [3. KIE模型](#3-kie模型)
|
2022-04-18 15:28:22 +08:00
|
|
|
|
|
2021-12-13 17:31:57 +08:00
|
|
|
|
|
2022-04-18 15:28:22 +08:00
|
|
|
|
<a name="1"></a>
|
|
|
|
|
## 1. 版面分析模型
|
2021-12-13 17:31:57 +08:00
|
|
|
|
|
2022-03-11 12:43:34 +08:00
|
|
|
|
|模型名称|模型简介|下载地址|label_map|
|
|
|
|
|
| --- | --- | --- | --- |
|
|
|
|
|
| ppyolov2_r50vd_dcn_365e_publaynet | PubLayNet 数据集训练的版面分析模型,可以划分**文字、标题、表格、图片以及列表**5类区域 | [推理模型](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_publaynet.tar) / [训练模型](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_publaynet_pretrained.pdparams) |{0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"}|
|
|
|
|
|
| ppyolov2_r50vd_dcn_365e_tableBank_word | TableBank Word 数据集训练的版面分析模型,只能检测表格 | [推理模型](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_tableBank_word.tar) | {0:"Table"}|
|
|
|
|
|
| ppyolov2_r50vd_dcn_365e_tableBank_latex | TableBank Latex 数据集训练的版面分析模型,只能检测表格 | [推理模型](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_tableBank_latex.tar) | {0:"Table"}|
|
2021-12-13 17:31:57 +08:00
|
|
|
|
|
2022-04-18 15:28:22 +08:00
|
|
|
|
<a name="2"></a>
|
2021-12-13 17:31:57 +08:00
|
|
|
|
## 2. OCR和表格识别模型
|
|
|
|
|
|
2022-04-18 15:28:22 +08:00
|
|
|
|
<a name="21"></a>
|
2022-02-12 15:56:32 +08:00
|
|
|
|
### 2.1 OCR
|
|
|
|
|
|
2021-12-13 17:31:57 +08:00
|
|
|
|
|模型名称|模型简介|推理模型大小|下载地址|
|
|
|
|
|
| --- | --- | --- | --- |
|
|
|
|
|
|en_ppocr_mobile_v2.0_table_det|PubLayNet数据集训练的英文表格场景的文字检测|4.7M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_det_train.tar) |
|
|
|
|
|
|en_ppocr_mobile_v2.0_table_rec|PubLayNet数据集训练的英文表格场景的文字识别|6.9M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_rec_train.tar) |
|
2022-02-12 15:56:32 +08:00
|
|
|
|
|
|
|
|
|
如需要使用其他OCR模型,可以在 [PP-OCR model_list](../../doc/doc_ch/models_list.md) 下载模型或者使用自己训练好的模型配置到 `det_model_dir`, `rec_model_dir`两个字段即可。
|
|
|
|
|
|
2022-04-18 15:28:22 +08:00
|
|
|
|
<a name="22"></a>
|
2022-02-14 12:44:23 +08:00
|
|
|
|
### 2.2 表格识别模型
|
2022-02-12 15:56:32 +08:00
|
|
|
|
|
|
|
|
|
|模型名称|模型简介|推理模型大小|下载地址|
|
|
|
|
|
| --- | --- | --- | --- |
|
2022-08-16 18:46:09 +08:00
|
|
|
|
|en_ppocr_mobile_v2.0_table_structure|基于TableRec-RARE在PubTabNet数据集上训练的英文表格识别模型|18.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_structure_train.tar) |
|
|
|
|
|
|en_ppstructure_mobile_v2.0_SLANet|基于SLANet在PubTabNet数据集上训练的英文表格识别模型|9M|[推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/en_ppstructure_mobile_v2.0_SLANet_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/en_ppstructure_mobile_v2.0_SLANet_train.tar) |
|
|
|
|
|
|ch_ppstructure_mobile_v2.0_SLANet|基于SLANet在PubTabNet数据集上训练的中文表格识别模型|9.3M|[推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_train.tar) |
|
2021-12-13 17:31:57 +08:00
|
|
|
|
|
2022-04-18 15:28:22 +08:00
|
|
|
|
<a name="3"></a>
|
2021-12-13 17:31:57 +08:00
|
|
|
|
|
2022-08-15 18:05:21 +08:00
|
|
|
|
## 3. KIE模型
|
2022-02-12 15:56:32 +08:00
|
|
|
|
|
2022-08-15 18:05:21 +08:00
|
|
|
|
在XFUND_zh数据集上,不同模型的精度与V100 GPU上速度信息如下所示。
|
2021-12-21 13:17:25 +08:00
|
|
|
|
|
2022-08-15 18:05:21 +08:00
|
|
|
|
|模型名称|模型简介 | 推理模型大小| 精度(hmean) | 预测耗时(ms) | 下载地址|
|
|
|
|
|
| --- | --- | --- |--- |--- | --- |
|
|
|
|
|
|ser_VI-LayoutXLM_xfund_zh|基于VI-LayoutXLM在xfund中文数据集上训练的SER模型|1.1G| 93.19% | 15.49 | [推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_pretrained.tar) |
|
|
|
|
|
|re_VI-LayoutXLM_xfund_zh|基于VI-LayoutXLM在xfund中文数据集上训练的RE模型|1.1G| 83.92% | 15.49 |[推理模型 coming soon]() / [训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/re_vi_layoutxlm_xfund_pretrained.tar) |
|
|
|
|
|
|ser_LayoutXLM_xfund_zh|基于LayoutXLM在xfund中文数据集上训练的SER模型|1.4G| 90.38% | 19.49 |[推理模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutXLM_xfun_zh_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutXLM_xfun_zh.tar) |
|
|
|
|
|
|re_LayoutXLM_xfund_zh|基于LayoutXLM在xfund中文数据集上训练的RE模型|1.4G| 74.83% | 19.49 |[推理模型 coming soon]() / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutXLM_xfun_zh.tar) |
|
|
|
|
|
|ser_LayoutLMv2_xfund_zh|基于LayoutLMv2在xfund中文数据集上训练的SER模型|778M| 85.44% | 31.46 |[推理模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLMv2_xfun_zh_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLMv2_xfun_zh.tar) |
|
|
|
|
|
|re_LayoutLMv2_xfund_zh|基于LayoutLMv2在xfun中文数据集上训练的RE模型|765M| 67.77% | 31.46 |[推理模型 coming soon]() / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutLMv2_xfun_zh.tar) |
|
|
|
|
|
|ser_LayoutLM_xfund_zh|基于LayoutLM在xfund中文数据集上训练的SER模型|430M| 77.31% | - |[推理模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLM_xfun_zh_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLM_xfun_zh.tar) |
|
|
|
|
|
|
|
|
|
|
* 注:上述预测耗时信息仅包含了inference模型的推理耗时,没有统计预处理与后处理耗时,测试环境为`V100 GPU + CUDA 10.2 + CUDNN 8.1.1 + TRT 7.2.3.4`。
|
|
|
|
|
|
|
|
|
|
在wildreceipt数据集上,SDMGR模型精度与下载地址如下所示。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|模型名称|模型简介|模型大小|精度|下载地址|
|
|
|
|
|
| --- | --- | --- |--- | --- |
|
|
|
|
|
|SDMGR|关键信息提取模型|78M| 86.70% | [推理模型 coming soon]() / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/kie/kie_vgg16.tar)|
|