128 lines
3.7 KiB
Markdown
128 lines
3.7 KiB
Markdown
|
# Text Gestalt
|
|||
|
|
|||
|
- [1. 算法简介](#1)
|
|||
|
- [2. 环境配置](#2)
|
|||
|
- [3. 模型训练、评估、预测](#3)
|
|||
|
- [3.1 训练](#3-1)
|
|||
|
- [3.2 评估](#3-2)
|
|||
|
- [3.3 预测](#3-3)
|
|||
|
- [4. 推理部署](#4)
|
|||
|
- [4.1 Python推理](#4-1)
|
|||
|
- [4.2 C++推理](#4-2)
|
|||
|
- [4.3 Serving服务化部署](#4-3)
|
|||
|
- [4.4 更多推理部署](#4-4)
|
|||
|
- [5. FAQ](#5)
|
|||
|
|
|||
|
<a name="1"></a>
|
|||
|
## 1. 算法简介
|
|||
|
|
|||
|
论文信息:
|
|||
|
> [Text Gestalt: Stroke-Aware Scene Text Image Super-Resolution](https://arxiv.org/pdf/2112.08171.pdf)
|
|||
|
|
|||
|
> Chen, Jingye and Yu, Haiyang and Ma, Jianqi and Li, Bin and Xue, Xiangyang
|
|||
|
|
|||
|
> AAAI, 2022
|
|||
|
|
|||
|
参考[FudanOCR](https://github.com/FudanVI/FudanOCR/tree/main/text-gestalt) 数据下载说明,在TextZoom测试集合上超分算法效果如下:
|
|||
|
|
|||
|
|模型|骨干网络|PSNR_Avg|SSIM_Avg|配置文件|下载链接|
|
|||
|
|---|---|---|---|---|---|
|
|||
|
|Text Gestalt|tsrn|19.28|0.6560| [configs/sr/sr_tsrn_transformer_strock.yml](../../configs/sr/sr_tsrn_transformer_strock.yml)|[训练模型](https://paddleocr.bj.bcebos.com/sr_tsrn_transformer_strock_train.tar)|
|
|||
|
|
|||
|
|
|||
|
<a name="2"></a>
|
|||
|
## 2. 环境配置
|
|||
|
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
|
|||
|
|
|||
|
|
|||
|
<a name="3"></a>
|
|||
|
## 3. 模型训练、评估、预测
|
|||
|
|
|||
|
请参考[文本识别训练教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要**更换配置文件**即可。
|
|||
|
|
|||
|
- 训练
|
|||
|
|
|||
|
在完成数据准备后,便可以启动训练,训练命令如下:
|
|||
|
|
|||
|
```
|
|||
|
#单卡训练(训练周期长,不建议)
|
|||
|
python3 tools/train.py -c configs/sr/sr_tsrn_transformer_strock.yml
|
|||
|
|
|||
|
#多卡训练,通过--gpus参数指定卡号
|
|||
|
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/sr/sr_tsrn_transformer_strock.yml
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
- 评估
|
|||
|
|
|||
|
```
|
|||
|
# GPU 评估, Global.pretrained_model 为待测权重
|
|||
|
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/sr/sr_tsrn_transformer_strock.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
|
|||
|
```
|
|||
|
|
|||
|
- 预测:
|
|||
|
|
|||
|
```
|
|||
|
# 预测使用的配置文件必须与训练一致
|
|||
|
python3 tools/infer_sr.py -c configs/sr/sr_tsrn_transformer_strock.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words_en/word_52.png
|
|||
|
```
|
|||
|
|
|||
|

|
|||
|
|
|||
|
执行命令后,上面图像的超分结果如下:
|
|||
|
|
|||
|

|
|||
|
|
|||
|
<a name="4"></a>
|
|||
|
## 4. 推理部署
|
|||
|
|
|||
|
<a name="4-1"></a>
|
|||
|
### 4.1 Python推理
|
|||
|
|
|||
|
首先将文本超分训练过程中保存的模型,转换成inference model。以 Text-Gestalt 训练的[模型](https://paddleocr.bj.bcebos.com/sr_tsrn_transformer_strock_train.tar) 为例,可以使用如下命令进行转换:
|
|||
|
```shell
|
|||
|
python3 tools/export_model.py -c configs/sr/sr_tsrn_transformer_strock.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.save_inference_dir=./inference/sr_out
|
|||
|
```
|
|||
|
Text-Gestalt 文本超分模型推理,可以执行如下命令:
|
|||
|
```
|
|||
|
python3 tools/infer/predict_sr.py --sr_model_dir=./inference/sr_out --image_dir=doc/imgs_words_en/word_52.png --sr_image_shape=3,32,128
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
执行命令后,图像的超分结果如下:
|
|||
|
|
|||
|

|
|||
|
|
|||
|
<a name="4-2"></a>
|
|||
|
### 4.2 C++推理
|
|||
|
|
|||
|
暂未支持
|
|||
|
|
|||
|
<a name="4-3"></a>
|
|||
|
### 4.3 Serving服务化部署
|
|||
|
|
|||
|
暂未支持
|
|||
|
|
|||
|
<a name="4-4"></a>
|
|||
|
### 4.4 更多推理部署
|
|||
|
|
|||
|
暂未支持
|
|||
|
|
|||
|
<a name="5"></a>
|
|||
|
## 5. FAQ
|
|||
|
|
|||
|
|
|||
|
## 引用
|
|||
|
|
|||
|
```bibtex
|
|||
|
@inproceedings{chen2022text,
|
|||
|
title={Text gestalt: Stroke-aware scene text image super-resolution},
|
|||
|
author={Chen, Jingye and Yu, Haiyang and Ma, Jianqi and Li, Bin and Xue, Xiangyang},
|
|||
|
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
|
|||
|
volume={36},
|
|||
|
number={1},
|
|||
|
pages={285--293},
|
|||
|
year={2022}
|
|||
|
}
|
|||
|
```
|