PaddleOCR/ppocr/modeling/backbones/rec_efficientb3_pren.py

306 lines
10 KiB
Python
Raw Normal View History

# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Code is refer from:
https://github.com/RuijieJ/pren/blob/main/Nets/EfficientNet.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
2022-10-08 16:37:12 +08:00
import re
import collections
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
__all__ = ["EfficientNetb3_PREN"]
GlobalParams = collections.namedtuple(
"GlobalParams",
[
"batch_norm_momentum",
"batch_norm_epsilon",
"dropout_rate",
"num_classes",
"width_coefficient",
"depth_coefficient",
"depth_divisor",
"min_depth",
"drop_connect_rate",
"image_size",
],
)
BlockArgs = collections.namedtuple(
"BlockArgs",
[
"kernel_size",
"num_repeat",
"input_filters",
"output_filters",
"expand_ratio",
"id_skip",
"stride",
"se_ratio",
],
)
2022-10-08 16:37:12 +08:00
class BlockDecoder:
@staticmethod
2022-10-08 16:37:12 +08:00
def _decode_block_string(block_string):
assert isinstance(block_string, str)
ops = block_string.split("_")
2022-10-08 16:37:12 +08:00
options = {}
for op in ops:
splits = re.split(r"(\d.*)", op)
2022-10-08 16:37:12 +08:00
if len(splits) >= 2:
key, value = splits[:2]
options[key] = value
assert ("s" in options and len(options["s"]) == 1) or (
len(options["s"]) == 2 and options["s"][0] == options["s"][1]
)
2022-10-08 16:37:12 +08:00
return BlockArgs(
kernel_size=int(options["k"]),
num_repeat=int(options["r"]),
input_filters=int(options["i"]),
output_filters=int(options["o"]),
expand_ratio=int(options["e"]),
id_skip=("noskip" not in block_string),
se_ratio=float(options["se"]) if "se" in options else None,
stride=[int(options["s"][0])],
)
@staticmethod
2022-10-08 16:37:12 +08:00
def decode(string_list):
assert isinstance(string_list, list)
blocks_args = []
for block_string in string_list:
blocks_args.append(BlockDecoder._decode_block_string(block_string))
return blocks_args
def efficientnet(
width_coefficient=None,
depth_coefficient=None,
dropout_rate=0.2,
drop_connect_rate=0.2,
image_size=None,
num_classes=1000,
):
2022-10-08 16:37:12 +08:00
blocks_args = [
"r1_k3_s11_e1_i32_o16_se0.25",
"r2_k3_s22_e6_i16_o24_se0.25",
"r2_k5_s22_e6_i24_o40_se0.25",
"r3_k3_s22_e6_i40_o80_se0.25",
"r3_k5_s11_e6_i80_o112_se0.25",
"r4_k5_s22_e6_i112_o192_se0.25",
"r1_k3_s11_e6_i192_o320_se0.25",
2022-10-08 16:37:12 +08:00
]
blocks_args = BlockDecoder.decode(blocks_args)
global_params = GlobalParams(
batch_norm_momentum=0.99,
batch_norm_epsilon=1e-3,
dropout_rate=dropout_rate,
drop_connect_rate=drop_connect_rate,
num_classes=num_classes,
width_coefficient=width_coefficient,
depth_coefficient=depth_coefficient,
depth_divisor=8,
min_depth=None,
image_size=image_size,
)
2022-10-08 16:37:12 +08:00
return blocks_args, global_params
class EffUtils:
@staticmethod
def round_filters(filters, global_params):
"""Calculate and round number of filters based on depth multiplier."""
multiplier = global_params.width_coefficient
if not multiplier:
return filters
divisor = global_params.depth_divisor
2022-10-08 16:37:12 +08:00
min_depth = global_params.min_depth
filters *= multiplier
2022-10-08 16:37:12 +08:00
min_depth = min_depth or divisor
new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor)
if new_filters < 0.9 * filters:
new_filters += divisor
return int(new_filters)
@staticmethod
def round_repeats(repeats, global_params):
"""Round number of filters based on depth multiplier."""
multiplier = global_params.depth_coefficient
if not multiplier:
return repeats
return int(math.ceil(multiplier * repeats))
2022-10-08 16:37:12 +08:00
class MbConvBlock(nn.Layer):
def __init__(self, block_args):
super(MbConvBlock, self).__init__()
self._block_args = block_args
self.has_se = (self._block_args.se_ratio is not None) and (
0 < self._block_args.se_ratio <= 1
)
2022-10-08 16:37:12 +08:00
self.id_skip = block_args.id_skip
# expansion phase
2022-10-08 16:37:12 +08:00
self.inp = self._block_args.input_filters
oup = self._block_args.input_filters * self._block_args.expand_ratio
if self._block_args.expand_ratio != 1:
self._expand_conv = nn.Conv2D(self.inp, oup, 1, bias_attr=False)
self._bn0 = nn.BatchNorm(oup)
# depthwise conv phase
2022-10-08 16:37:12 +08:00
k = self._block_args.kernel_size
s = self._block_args.stride
if isinstance(s, list):
s = s[0]
self._depthwise_conv = nn.Conv2D(
oup,
oup,
groups=oup,
kernel_size=k,
stride=s,
padding="same",
bias_attr=False,
)
2022-10-08 16:37:12 +08:00
self._bn1 = nn.BatchNorm(oup)
# squeeze and excitation layer, if desired
if self.has_se:
num_squeezed_channels = max(
1, int(self._block_args.input_filters * self._block_args.se_ratio)
)
2022-10-08 16:37:12 +08:00
self._se_reduce = nn.Conv2D(oup, num_squeezed_channels, 1)
self._se_expand = nn.Conv2D(num_squeezed_channels, oup, 1)
# output phase and some util class
self.final_oup = self._block_args.output_filters
self._project_conv = nn.Conv2D(oup, self.final_oup, 1, bias_attr=False)
self._bn2 = nn.BatchNorm(self.final_oup)
self._swish = nn.Swish()
def _drop_connect(self, inputs, p, training):
if not training:
return inputs
batch_size = inputs.shape[0]
keep_prob = 1 - p
random_tensor = keep_prob
random_tensor += paddle.rand([batch_size, 1, 1, 1], dtype=inputs.dtype)
random_tensor = paddle.to_tensor(random_tensor, place=inputs.place)
binary_tensor = paddle.floor(random_tensor)
output = inputs / keep_prob * binary_tensor
return output
def forward(self, inputs, drop_connect_rate=None):
# expansion and depthwise conv
x = inputs
2022-10-08 16:37:12 +08:00
if self._block_args.expand_ratio != 1:
x = self._swish(self._bn0(self._expand_conv(inputs)))
x = self._swish(self._bn1(self._depthwise_conv(x)))
# squeeze and excitation
if self.has_se:
x_squeezed = F.adaptive_avg_pool2d(x, 1)
x_squeezed = self._se_expand(self._swish(self._se_reduce(x_squeezed)))
x = F.sigmoid(x_squeezed) * x
2022-10-08 16:37:12 +08:00
x = self._bn2(self._project_conv(x))
# skip conntection and drop connect
if self.id_skip and self._block_args.stride == 1 and self.inp == self.final_oup:
if drop_connect_rate:
x = self._drop_connect(x, p=drop_connect_rate, training=self.training)
x = x + inputs
return x
class EfficientNetb3_PREN(nn.Layer):
def __init__(self, in_channels):
super(EfficientNetb3_PREN, self).__init__()
2022-10-08 16:37:12 +08:00
"""
the fllowing are efficientnetb3's superparams,
they means efficientnetb3 network's width, depth, resolution and
dropout respectively, to fit for text recognition task, the resolution
2022-10-08 16:37:12 +08:00
here is changed from 300 to 64.
"""
w, d, s, p = 1.2, 1.4, 64, 0.3
self._blocks_args, self._global_params = efficientnet(
width_coefficient=w, depth_coefficient=d, dropout_rate=p, image_size=s
)
self.out_channels = []
# stem
2022-10-08 16:37:12 +08:00
out_channels = EffUtils.round_filters(32, self._global_params)
self._conv_stem = nn.Conv2D(
in_channels, out_channels, 3, 2, padding="same", bias_attr=False
)
2022-10-08 16:37:12 +08:00
self._bn0 = nn.BatchNorm(out_channels)
2022-10-08 16:37:12 +08:00
# build blocks
self._blocks = []
# to extract three feature maps for fpn based on efficientnetb3 backbone
2022-10-08 16:37:12 +08:00
self._concerned_block_idxes = [7, 17, 25]
_concerned_idx = 0
for i, block_args in enumerate(self._blocks_args):
block_args = block_args._replace(
input_filters=EffUtils.round_filters(
block_args.input_filters, self._global_params
),
output_filters=EffUtils.round_filters(
block_args.output_filters, self._global_params
),
num_repeat=EffUtils.round_repeats(
block_args.num_repeat, self._global_params
),
)
self._blocks.append(self.add_sublayer(f"{i}-0", MbConvBlock(block_args)))
2022-10-08 16:37:12 +08:00
_concerned_idx += 1
if _concerned_idx in self._concerned_block_idxes:
self.out_channels.append(block_args.output_filters)
if block_args.num_repeat > 1:
block_args = block_args._replace(
input_filters=block_args.output_filters, stride=1
)
2022-10-08 16:37:12 +08:00
for j in range(block_args.num_repeat - 1):
self._blocks.append(
self.add_sublayer(f"{i}-{j+1}", MbConvBlock(block_args))
)
2022-10-08 16:37:12 +08:00
_concerned_idx += 1
if _concerned_idx in self._concerned_block_idxes:
self.out_channels.append(block_args.output_filters)
self._swish = nn.Swish()
def forward(self, inputs):
outs = []
2022-10-08 16:37:12 +08:00
x = self._swish(self._bn0(self._conv_stem(inputs)))
for idx, block in enumerate(self._blocks):
drop_connect_rate = self._global_params.drop_connect_rate
if drop_connect_rate:
2022-10-08 16:37:12 +08:00
drop_connect_rate *= float(idx) / len(self._blocks)
x = block(x, drop_connect_rate=drop_connect_rate)
2022-10-08 16:37:12 +08:00
if idx in self._concerned_block_idxes:
outs.append(x)
return outs