PaddleOCR/deploy/slim/prune/export_prune_model.py

140 lines
4.8 KiB
Python
Raw Normal View History

2021-02-19 11:48:38 +08:00
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '..', '..', '..'))
sys.path.append(os.path.join(__dir__, '..', '..', '..', 'tools'))
import paddle
from ppocr.data import build_dataloader
from ppocr.modeling.architectures import build_model
2021-02-19 13:21:28 +08:00
2021-02-19 11:48:38 +08:00
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import load_model
2021-02-19 11:48:38 +08:00
import tools.program as program
def main(config, device, logger, vdl_writer):
global_config = config['Global']
# build dataloader
valid_dataloader = build_dataloader(config, 'Eval', device, logger)
# build post process
post_process_class = build_post_process(config['PostProcess'],
global_config)
# build model
# for rec algorithm
if hasattr(post_process_class, 'character'):
char_num = len(getattr(post_process_class, 'character'))
config['Architecture']["Head"]['out_channels'] = char_num
model = build_model(config['Architecture'])
2021-11-30 15:12:05 +08:00
if config['Architecture']['model_type'] == 'det':
input_shape = [1, 3, 640, 640]
elif config['Architecture']['model_type'] == 'rec':
input_shape = [1, 3, 32, 320]
flops = paddle.flops(model, input_shape)
logger.info("FLOPs before pruning: {}".format(flops))
2021-02-19 11:48:38 +08:00
from paddleslim.dygraph import FPGMFilterPruner
model.train()
2021-11-30 15:12:05 +08:00
pruner = FPGMFilterPruner(model, input_shape)
2021-02-19 11:48:38 +08:00
# build metric
eval_class = build_metric(config['Metric'])
def eval_fn():
metric = program.eval(model, valid_dataloader, post_process_class,
eval_class)
2021-11-30 15:12:05 +08:00
if config['Architecture']['model_type'] == 'det':
main_indicator = 'hmean'
else:
main_indicator = 'acc'
logger.info("metric[{}]: {}".format(main_indicator, metric[
main_indicator]))
return metric[main_indicator]
2021-02-19 11:48:38 +08:00
params_sensitive = pruner.sensitive(
eval_func=eval_fn,
sen_file="./sen.pickle",
skip_vars=[
"conv2d_57.w_0", "conv2d_transpose_2.w_0", "conv2d_transpose_3.w_0"
])
logger.info(
"The sensitivity analysis results of model parameters saved in sen.pickle"
)
# calculate pruned params's ratio
params_sensitive = pruner._get_ratios_by_loss(params_sensitive, loss=0.02)
for key in params_sensitive.keys():
2021-11-30 15:12:05 +08:00
logger.info("{}, {}".format(key, params_sensitive[key]))
2021-02-19 11:48:38 +08:00
plan = pruner.prune_vars(params_sensitive, [0])
2021-11-30 15:12:05 +08:00
flops = paddle.flops(model, input_shape)
logger.info("FLOPs after pruning: {}".format(flops))
2021-02-19 11:48:38 +08:00
# load pretrain model
load_model(config, model)
2021-02-19 11:48:38 +08:00
metric = program.eval(model, valid_dataloader, post_process_class,
eval_class)
2021-11-30 15:12:05 +08:00
if config['Architecture']['model_type'] == 'det':
main_indicator = 'hmean'
else:
main_indicator = 'acc'
logger.info("metric['']: {}".format(main_indicator, metric[main_indicator]))
2021-02-19 11:48:38 +08:00
# start export model
from paddle.jit import to_static
infer_shape = [3, -1, -1]
if config['Architecture']['model_type'] == "rec":
infer_shape = [3, 32, -1] # for rec model, H must be 32
if 'Transform' in config['Architecture'] and config['Architecture'][
'Transform'] is not None and config['Architecture'][
'Transform']['name'] == 'TPS':
logger.info(
'When there is tps in the network, variable length input is not supported, and the input size needs to be the same as during training'
)
infer_shape[-1] = 100
model = to_static(
model,
input_spec=[
paddle.static.InputSpec(
shape=[None] + infer_shape, dtype='float32')
])
save_path = '{}/inference'.format(config['Global']['save_inference_dir'])
paddle.jit.save(model, save_path)
logger.info('inference model is saved to {}'.format(save_path))
if __name__ == '__main__':
config, device, logger, vdl_writer = program.preprocess(is_train=True)
main(config, device, logger, vdl_writer)