PaddleOCR/ppocr/data/lmdb_dataset.py

206 lines
7.6 KiB
Python
Raw Normal View History

2020-11-04 20:43:27 +08:00
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import os
from paddle.io import Dataset
import lmdb
import cv2
import string
import six
from PIL import Image
2020-11-04 20:43:27 +08:00
from .imaug import transform, create_operators
2020-11-05 15:13:36 +08:00
2020-11-04 20:43:27 +08:00
2021-01-29 15:03:41 +08:00
class LMDBDataSet(Dataset):
def __init__(self, config, mode, logger, seed=None):
2021-01-29 15:03:41 +08:00
super(LMDBDataSet, self).__init__()
2020-11-05 15:13:36 +08:00
2020-11-04 20:43:27 +08:00
global_config = config['Global']
dataset_config = config[mode]['dataset']
loader_config = config[mode]['loader']
batch_size = loader_config['batch_size_per_card']
data_dir = dataset_config['data_dir']
self.do_shuffle = loader_config['shuffle']
2020-11-05 15:13:36 +08:00
2020-11-04 20:43:27 +08:00
self.lmdb_sets = self.load_hierarchical_lmdb_dataset(data_dir)
logger.info("Initialize indexs of datasets:%s" % data_dir)
self.data_idx_order_list = self.dataset_traversal()
if self.do_shuffle:
np.random.shuffle(self.data_idx_order_list)
self.ops = create_operators(dataset_config['transforms'], global_config)
2022-10-11 15:13:38 +08:00
self.ext_op_transform_idx = dataset_config.get("ext_op_transform_idx",
1)
2020-11-04 20:43:27 +08:00
2022-01-12 17:54:07 +08:00
ratio_list = dataset_config.get("ratio_list", [1.0])
self.need_reset = True in [x < 1 for x in ratio_list]
2020-11-04 20:43:27 +08:00
def load_hierarchical_lmdb_dataset(self, data_dir):
lmdb_sets = {}
dataset_idx = 0
for dirpath, dirnames, filenames in os.walk(data_dir + '/'):
if not dirnames:
env = lmdb.open(
dirpath,
max_readers=32,
readonly=True,
lock=False,
readahead=False,
meminit=False)
txn = env.begin(write=False)
num_samples = int(txn.get('num-samples'.encode()))
lmdb_sets[dataset_idx] = {"dirpath":dirpath, "env":env, \
"txn":txn, "num_samples":num_samples}
dataset_idx += 1
return lmdb_sets
2020-11-05 15:13:36 +08:00
2020-11-04 20:43:27 +08:00
def dataset_traversal(self):
lmdb_num = len(self.lmdb_sets)
total_sample_num = 0
for lno in range(lmdb_num):
total_sample_num += self.lmdb_sets[lno]['num_samples']
data_idx_order_list = np.zeros((total_sample_num, 2))
beg_idx = 0
for lno in range(lmdb_num):
tmp_sample_num = self.lmdb_sets[lno]['num_samples']
end_idx = beg_idx + tmp_sample_num
data_idx_order_list[beg_idx:end_idx, 0] = lno
data_idx_order_list[beg_idx:end_idx, 1] \
= list(range(tmp_sample_num))
data_idx_order_list[beg_idx:end_idx, 1] += 1
beg_idx = beg_idx + tmp_sample_num
return data_idx_order_list
2020-11-05 15:13:36 +08:00
2020-11-04 20:43:27 +08:00
def get_img_data(self, value):
"""get_img_data"""
if not value:
return None
imgdata = np.frombuffer(value, dtype='uint8')
if imgdata is None:
return None
imgori = cv2.imdecode(imgdata, 1)
if imgori is None:
return None
return imgori
2022-10-11 15:13:38 +08:00
def get_ext_data(self):
ext_data_num = 0
for op in self.ops:
if hasattr(op, 'ext_data_num'):
ext_data_num = getattr(op, 'ext_data_num')
break
load_data_ops = self.ops[:self.ext_op_transform_idx]
ext_data = []
while len(ext_data) < ext_data_num:
lmdb_idx, file_idx = self.data_idx_order_list[np.random.randint(
len(self))]
lmdb_idx = int(lmdb_idx)
file_idx = int(file_idx)
sample_info = self.get_lmdb_sample_info(
self.lmdb_sets[lmdb_idx]['txn'], file_idx)
if sample_info is None:
continue
img, label = sample_info
data = {'image': img, 'label': label}
data = transform(data, load_data_ops)
if data is None:
continue
ext_data.append(data)
return ext_data
2020-11-04 20:43:27 +08:00
def get_lmdb_sample_info(self, txn, index):
label_key = 'label-%09d'.encode() % index
label = txn.get(label_key)
if label is None:
return None
label = label.decode('utf-8')
img_key = 'image-%09d'.encode() % index
imgbuf = txn.get(img_key)
return imgbuf, label
2020-11-05 15:13:36 +08:00
2020-11-04 20:43:27 +08:00
def __getitem__(self, idx):
lmdb_idx, file_idx = self.data_idx_order_list[idx]
lmdb_idx = int(lmdb_idx)
file_idx = int(file_idx)
2020-11-05 15:13:36 +08:00
sample_info = self.get_lmdb_sample_info(self.lmdb_sets[lmdb_idx]['txn'],
file_idx)
2020-11-04 20:43:27 +08:00
if sample_info is None:
2020-11-05 15:13:36 +08:00
return self.__getitem__(np.random.randint(self.__len__()))
2020-11-04 20:43:27 +08:00
img, label = sample_info
data = {'image': img, 'label': label}
2022-10-11 15:13:38 +08:00
data['ext_data'] = self.get_ext_data()
2020-11-04 20:43:27 +08:00
outs = transform(data, self.ops)
if outs is None:
return self.__getitem__(np.random.randint(self.__len__()))
return outs
def __len__(self):
return self.data_idx_order_list.shape[0]
class LMDBDataSetSR(LMDBDataSet):
def buf2PIL(self, txn, key, type='RGB'):
imgbuf = txn.get(key)
buf = six.BytesIO()
buf.write(imgbuf)
buf.seek(0)
im = Image.open(buf).convert(type)
return im
def str_filt(self, str_, voc_type):
alpha_dict = {
'digit': string.digits,
'lower': string.digits + string.ascii_lowercase,
'upper': string.digits + string.ascii_letters,
'all': string.digits + string.ascii_letters + string.punctuation
}
if voc_type == 'lower':
str_ = str_.lower()
for char in str_:
if char not in alpha_dict[voc_type]:
str_ = str_.replace(char, '')
return str_
def get_lmdb_sample_info(self, txn, index):
self.voc_type = 'upper'
self.max_len = 100
self.test = False
label_key = b'label-%09d' % index
word = str(txn.get(label_key).decode())
img_HR_key = b'image_hr-%09d' % index # 128*32
img_lr_key = b'image_lr-%09d' % index # 64*16
try:
img_HR = self.buf2PIL(txn, img_HR_key, 'RGB')
img_lr = self.buf2PIL(txn, img_lr_key, 'RGB')
except IOError or len(word) > self.max_len:
return self[index + 1]
label_str = self.str_filt(word, self.voc_type)
return img_HR, img_lr, label_str
def __getitem__(self, idx):
lmdb_idx, file_idx = self.data_idx_order_list[idx]
lmdb_idx = int(lmdb_idx)
file_idx = int(file_idx)
sample_info = self.get_lmdb_sample_info(self.lmdb_sets[lmdb_idx]['txn'],
file_idx)
if sample_info is None:
return self.__getitem__(np.random.randint(self.__len__()))
img_HR, img_lr, label_str = sample_info
data = {'image_hr': img_HR, 'image_lr': img_lr, 'label': label_str}
outs = transform(data, self.ops)
if outs is None:
return self.__getitem__(np.random.randint(self.__len__()))
return outs