PaddleOCR/ppstructure/kie/README_ch.md

263 lines
11 KiB
Markdown
Raw Normal View History

[English](README.md) | 简体中文
# 关键信息抽取
- [1. 简介](#1-简介)
- [2. 精度与性能](#2-精度与性能)
- [3. 效果演示](#3-效果演示)
- [3.1 SER](#31-ser)
- [3.2 RE](#32-re)
- [4. 使用](#4-使用)
- [4.1 准备环境](#41-准备环境)
- [4.2 快速开始](#42-快速开始)
- [4.3 更多](#43-更多)
- [5. 参考链接](#5-参考链接)
- [6. License](#6-License)
## 1. 简介
关键信息抽取 (Key Information Extraction, KIE)指的是是从文本或者图像中抽取出关键的信息。针对文档图像的关键信息抽取任务作为OCR的下游任务存在非常多的实际应用场景如表单识别、车票信息抽取、身份证信息抽取等。
PP-Structure 基于 LayoutXLM 文档多模态系列方法进行研究与优化设计了视觉特征无关的多模态模型结构VI-LayoutXLM同时引入符合阅读顺序的文本行排序方法以及UDML联合互学习蒸馏方法最终在精度与速度均超越LayoutXLM。
PP-Structure中关键信息抽取模块的主要特性如下
- 集成[LayoutXLM](https://arxiv.org/pdf/2104.08836.pdf)、VI-LayoutXLM等多模态模型以及PP-OCR预测引擎。
- 支持基于多模态方法的语义实体识别 (Semantic Entity Recognition, SER) 以及关系抽取 (Relation Extraction, RE) 任务。基于 SER 任务,可以完成对图像中的文本识别与分类;基于 RE 任务,可以完成对图象中的文本内容的关系提取,如判断问题对(pair)。
- 支持SER任务和RE任务的自定义训练。
- 支持OCR+SER的端到端系统预测与评估。
- 支持OCR+SER+RE的端到端系统预测。
- 支持SER模型的动转静导出与基于PaddleInfernece的模型推理。
## 2. 精度与性能
我们在 [XFUND](https://github.com/doc-analysis/XFUND) 的中文数据集上对算法进行了评估SER与RE上的任务性能如下
|模型|骨干网络|任务|配置文件|hmean|预测耗时(ms)|下载链接|
| --- | --- | --- | --- | --- | --- | --- |
|VI-LayoutXLM| VI-LayoutXLM-base | SER | [ser_vi_layoutxlm_xfund_zh_udml.yml](../../configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh_udml.yml)|**93.19%**| 15.49|[训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_pretrained.tar)|
|LayoutXLM| LayoutXLM-base | SER | [ser_layoutxlm_xfund_zh.yml](../../configs/kie/layoutlm_series/ser_layoutxlm_xfund_zh.yml)|90.38%| 19.49 | [训练模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutXLM_xfun_zh.tar)|
|VI-LayoutXLM| VI-LayoutXLM-base | RE | [re_vi_layoutxlm_xfund_zh_udml.yml](../../configs/kie/vi_layoutxlm/re_vi_layoutxlm_xfund_zh_udml.yml)|**83.92%**| 15.49|[训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/re_vi_layoutxlm_xfund_pretrained.tar)|
|LayoutXLM| LayoutXLM-base | RE | [re_layoutxlm_xfund_zh.yml](../../configs/kie/layoutlm_series/re_layoutxlm_xfund_zh.yml)|74.83%| 19.49|[训练模型](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutXLM_xfun_zh.tar)|
*预测耗时测试条件V100 GPU + cuda10.2 + cudnn8.1.1 + TensorRT 7.2.3.4使用FP16进行测试。
更多关于PaddleOCR中关键信息抽取模型的介绍请参考[关键信息抽取模型库](../../doc/doc_ch/algorithm_overview.md)。
## 3. 效果演示
基于多模态模型的关键信息抽取任务有2种主要的解决方案。
1文本检测 + 文本识别 + 语义实体识别(SER)
2文本检测 + 文本识别 + 语义实体识别(SER) + 关系抽取(RE)
下面给出SER与RE任务的示例效果关于上述解决方案的详细介绍请参考[关键信息抽取全流程指南](./how_to_do_kie.md)。
### 3.1 SER
对于SER任务效果如下所示。
<div align="center">
<img src="https://user-images.githubusercontent.com/14270174/185539141-68e71c75-5cf7-4529-b2ca-219d29fa5f68.jpg" width="600">
</div>
<div align="center">
<img src="https://user-images.githubusercontent.com/14270174/185310636-6ce02f7c-790d-479f-b163-ea97a5a04808.jpg" width="600">
</div>
<div align="center">
<img src="https://user-images.githubusercontent.com/14270174/185539517-ccf2372a-f026-4a7c-ad28-c741c770f60a.png" width="600">
</div>
<div align="center">
<img src="https://user-images.githubusercontent.com/14270174/185539735-37b5c2ef-629d-43fe-9abb-44bb717ef7ee.jpg" width="600">
</div>
**注意:** 测试图片来源于[XFUND数据集](https://github.com/doc-analysis/XFUND)、[发票数据集](https://aistudio.baidu.com/aistudio/datasetdetail/165561)以及合成的身份证数据集。
图中不同颜色的框表示不同的类别。
图中的发票以及申请表图像,有`QUESTION`, `ANSWER`, `HEADER` 3种类别识别的`QUESTION`, `ANSWER`可以用于后续的问题与答案的关系抽取。
图中的身份证图像,则直接识别出其中的`姓名`、`性别`、`民族`等关键信息,这样就无需后续的关系抽取过程,一个模型即可完成关键信息抽取。
### 3.2 RE
对于RE任务效果如下所示。
<div align="center">
<img src="https://user-images.githubusercontent.com/14270174/185393805-c67ff571-cf7e-4217-a4b0-8b396c4f22bb.jpg" width="600">
</div>
<div align="center">
<img src="https://user-images.githubusercontent.com/14270174/185540080-0431e006-9235-4b6d-b63d-0b3c6e1de48f.jpg" width="600">
</div>
<div align="center">
<img src="https://user-images.githubusercontent.com/14270174/185540291-f64e5daf-6d42-4e7c-bbbb-471e3fac4fcc.png" width="600">
</div>
红色框是问题蓝色框是答案。绿色线条表示连接的两端为一个key-value的pair。
## 4. 使用
### 4.1 准备环境
使用下面的命令安装运行SER与RE关键信息抽取的依赖。
```bash
git clone https://github.com/PaddlePaddle/PaddleOCR.git
cd PaddleOCR
pip install -r requirements.txt
pip install -r ppstructure/kie/requirements.txt
# 安装PaddleOCR引擎用于预测
pip install paddleocr -U
```
### 4.2 快速开始
下面XFUND数据集快速体验SER模型与RE模型。
#### 4.2.1 准备数据
```bash
mkdir train_data
cd train_data
# 下载与解压数据
wget https://paddleocr.bj.bcebos.com/ppstructure/dataset/XFUND.tar && tar -xf XFUND.tar
cd ..
```
#### 4.2.2 基于动态图的预测
首先下载模型。
```bash
mkdir pretrained_model
cd pretrained_model
# 下载并解压SER预训练模型
wget https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_pretrained.tar && tar -xf ser_vi_layoutxlm_xfund_pretrained.tar
# 下载并解压RE预训练模型
wget https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/re_vi_layoutxlm_xfund_pretrained.tar && tar -xf re_vi_layoutxlm_xfund_pretrained.tar
```
如果希望使用OCR引擎获取端到端的预测结果可以使用下面的命令进行预测。
```bash
# 仅预测SER模型
python3 tools/infer_kie_token_ser.py \
-c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml \
2022-09-05 18:46:16 +08:00
-o Architecture.Backbone.checkpoints=./pretrained_model/ser_vi_layoutxlm_xfund_pretrained/best_accuracy \
Global.infer_img=./ppstructure/docs/kie/input/zh_val_42.jpg
# SER + RE模型串联
python3 ./tools/infer_kie_token_ser_re.py \
-c configs/kie/vi_layoutxlm/re_vi_layoutxlm_xfund_zh.yml \
2022-09-05 18:46:16 +08:00
-o Architecture.Backbone.checkpoints=./pretrained_model/re_vi_layoutxlm_xfund_pretrained/best_accuracy \
Global.infer_img=./train_data/XFUND/zh_val/image/zh_val_42.jpg \
-c_ser configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml \
2022-09-05 18:46:16 +08:00
-o_ser Architecture.Backbone.checkpoints=./pretrained_model/ser_vi_layoutxlm_xfund_pretrained/best_accuracy
```
`Global.save_res_path`目录中会保存可视化的结果图像以及预测的文本文件。
如果希望加载标注好的文本检测与识别结果,仅预测可以使用下面的命令进行预测。
```bash
# 仅预测SER模型
python3 tools/infer_kie_token_ser.py \
-c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml \
2022-09-05 18:46:16 +08:00
-o Architecture.Backbone.checkpoints=./pretrained_model/ser_vi_layoutxlm_xfund_pretrained/best_accuracy \
Global.infer_img=./train_data/XFUND/zh_val/val.json \
Global.infer_mode=False
# SER + RE模型串联
python3 ./tools/infer_kie_token_ser_re.py \
-c configs/kie/vi_layoutxlm/re_vi_layoutxlm_xfund_zh.yml \
2022-09-05 18:46:16 +08:00
-o Architecture.Backbone.checkpoints=./pretrained_model/re_vi_layoutxlm_xfund_pretrained/best_accuracy \
Global.infer_img=./train_data/XFUND/zh_val/val.json \
Global.infer_mode=False \
-c_ser configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml \
2022-09-05 18:46:16 +08:00
-o_ser Architecture.Backbone.checkpoints=./pretrained_model/ser_vi_layoutxlm_xfund_pretrained/best_accuracy
```
#### 4.2.3 基于PaddleInference的预测
2022-09-20 22:13:27 +08:00
首先下载SER和RE的推理模型。
```bash
mkdir inference
cd inference
wget https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_infer.tar && tar -xf ser_vi_layoutxlm_xfund_infer.tar
2022-09-20 22:13:27 +08:00
wget https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/re_vi_layoutxlm_xfund_infer.tar && tar -xf re_vi_layoutxlm_xfund_infer.tar
cd ..
```
2022-09-21 17:56:29 +08:00
- SER
2022-09-20 22:13:27 +08:00
执行下面的命令进行预测。
```bash
cd ppstructure
python3 kie/predict_kie_token_ser.py \
--kie_algorithm=LayoutXLM \
--ser_model_dir=../inference/ser_vi_layoutxlm_xfund_infer \
--image_dir=./docs/kie/input/zh_val_42.jpg \
--ser_dict_path=../train_data/XFUND/class_list_xfun.txt \
--vis_font_path=../doc/fonts/simfang.ttf \
--ocr_order_method="tb-yx"
```
可视化结果保存在`output`目录下。
2022-09-21 17:56:29 +08:00
- RE
2022-09-20 22:13:27 +08:00
执行下面的命令进行预测。
```bash
cd ppstructure
python3 kie/predict_kie_token_ser_re.py \
--kie_algorithm=LayoutXLM \
--re_model_dir=../inference/re_vi_layoutxlm_xfund_infer \
--ser_model_dir=../inference/ser_vi_layoutxlm_xfund_infer \
--use_visual_backbone=False \
--image_dir=./docs/kie/input/zh_val_42.jpg \
--ser_dict_path=../train_data/XFUND/class_list_xfun.txt \
--vis_font_path=../doc/fonts/simfang.ttf \
--ocr_order_method="tb-yx"
```
可视化结果保存在`output`目录下。
### 4.3 更多
关于KIE模型的训练评估与推理请参考[关键信息抽取教程](../../doc/doc_ch/kie.md)。
关于文本检测模型的训练评估与推理,请参考:[文本检测教程](../../doc/doc_ch/detection.md)。
关于文本识别模型的训练评估与推理,请参考:[文本识别教程](../../doc/doc_ch/recognition.md)。
关于怎样在自己的场景中完成关键信息抽取任务,请参考:[关键信息抽取全流程指南](./how_to_do_kie.md)。
## 5. 参考链接
- LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding, https://arxiv.org/pdf/2104.08836.pdf
- microsoft/unilm/layoutxlm, https://github.com/microsoft/unilm/tree/master/layoutxlm
- XFUND dataset, https://github.com/doc-analysis/XFUND
## 6. License
The content of this project itself is licensed under the [Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/)