2020-10-13 17:13:33 +08:00
|
|
|
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
from paddle import nn
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
from paddle import ParamAttr
|
2022-04-24 17:16:27 +08:00
|
|
|
from ppocr.backbones.det_mobilenet_v3 import SEModule, ConvBNLayer
|
2020-10-13 17:13:33 +08:00
|
|
|
|
|
|
|
|
2020-11-04 20:43:27 +08:00
|
|
|
class DBFPN(nn.Layer):
|
2020-10-13 17:13:33 +08:00
|
|
|
def __init__(self, in_channels, out_channels, **kwargs):
|
2020-11-04 20:43:27 +08:00
|
|
|
super(DBFPN, self).__init__()
|
2020-10-13 17:13:33 +08:00
|
|
|
self.out_channels = out_channels
|
2020-11-05 20:45:19 +08:00
|
|
|
weight_attr = paddle.nn.initializer.KaimingUniform()
|
2020-10-13 17:13:33 +08:00
|
|
|
|
2020-11-05 15:13:36 +08:00
|
|
|
self.in2_conv = nn.Conv2D(
|
2020-10-13 17:13:33 +08:00
|
|
|
in_channels=in_channels[0],
|
|
|
|
out_channels=self.out_channels,
|
|
|
|
kernel_size=1,
|
2021-06-06 18:39:17 +08:00
|
|
|
weight_attr=ParamAttr(initializer=weight_attr),
|
2020-10-13 17:13:33 +08:00
|
|
|
bias_attr=False)
|
2020-11-05 15:13:36 +08:00
|
|
|
self.in3_conv = nn.Conv2D(
|
2020-10-13 17:13:33 +08:00
|
|
|
in_channels=in_channels[1],
|
|
|
|
out_channels=self.out_channels,
|
|
|
|
kernel_size=1,
|
2021-06-06 18:39:17 +08:00
|
|
|
weight_attr=ParamAttr(initializer=weight_attr),
|
2020-10-13 17:13:33 +08:00
|
|
|
bias_attr=False)
|
2020-11-05 15:13:36 +08:00
|
|
|
self.in4_conv = nn.Conv2D(
|
2020-10-13 17:13:33 +08:00
|
|
|
in_channels=in_channels[2],
|
|
|
|
out_channels=self.out_channels,
|
|
|
|
kernel_size=1,
|
2021-06-06 18:39:17 +08:00
|
|
|
weight_attr=ParamAttr(initializer=weight_attr),
|
2020-10-13 17:13:33 +08:00
|
|
|
bias_attr=False)
|
2020-11-05 15:13:36 +08:00
|
|
|
self.in5_conv = nn.Conv2D(
|
2020-10-13 17:13:33 +08:00
|
|
|
in_channels=in_channels[3],
|
|
|
|
out_channels=self.out_channels,
|
|
|
|
kernel_size=1,
|
2021-06-06 18:39:17 +08:00
|
|
|
weight_attr=ParamAttr(initializer=weight_attr),
|
2020-10-13 17:13:33 +08:00
|
|
|
bias_attr=False)
|
2020-11-05 15:13:36 +08:00
|
|
|
self.p5_conv = nn.Conv2D(
|
2020-10-13 17:13:33 +08:00
|
|
|
in_channels=self.out_channels,
|
|
|
|
out_channels=self.out_channels // 4,
|
|
|
|
kernel_size=3,
|
|
|
|
padding=1,
|
2021-06-06 18:39:17 +08:00
|
|
|
weight_attr=ParamAttr(initializer=weight_attr),
|
2020-10-13 17:13:33 +08:00
|
|
|
bias_attr=False)
|
2020-11-05 15:13:36 +08:00
|
|
|
self.p4_conv = nn.Conv2D(
|
2020-10-13 17:13:33 +08:00
|
|
|
in_channels=self.out_channels,
|
|
|
|
out_channels=self.out_channels // 4,
|
|
|
|
kernel_size=3,
|
|
|
|
padding=1,
|
2021-06-06 18:39:17 +08:00
|
|
|
weight_attr=ParamAttr(initializer=weight_attr),
|
2020-10-13 17:13:33 +08:00
|
|
|
bias_attr=False)
|
2020-11-05 15:13:36 +08:00
|
|
|
self.p3_conv = nn.Conv2D(
|
2020-10-13 17:13:33 +08:00
|
|
|
in_channels=self.out_channels,
|
|
|
|
out_channels=self.out_channels // 4,
|
|
|
|
kernel_size=3,
|
|
|
|
padding=1,
|
2021-06-06 18:39:17 +08:00
|
|
|
weight_attr=ParamAttr(initializer=weight_attr),
|
2020-10-13 17:13:33 +08:00
|
|
|
bias_attr=False)
|
2020-11-05 15:13:36 +08:00
|
|
|
self.p2_conv = nn.Conv2D(
|
2020-10-13 17:13:33 +08:00
|
|
|
in_channels=self.out_channels,
|
|
|
|
out_channels=self.out_channels // 4,
|
|
|
|
kernel_size=3,
|
|
|
|
padding=1,
|
2021-06-06 18:39:17 +08:00
|
|
|
weight_attr=ParamAttr(initializer=weight_attr),
|
2020-10-13 17:13:33 +08:00
|
|
|
bias_attr=False)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
c2, c3, c4, c5 = x
|
|
|
|
|
|
|
|
in5 = self.in5_conv(c5)
|
|
|
|
in4 = self.in4_conv(c4)
|
|
|
|
in3 = self.in3_conv(c3)
|
|
|
|
in2 = self.in2_conv(c2)
|
|
|
|
|
2020-11-06 18:15:44 +08:00
|
|
|
out4 = in4 + F.upsample(
|
|
|
|
in5, scale_factor=2, mode="nearest", align_mode=1) # 1/16
|
|
|
|
out3 = in3 + F.upsample(
|
|
|
|
out4, scale_factor=2, mode="nearest", align_mode=1) # 1/8
|
|
|
|
out2 = in2 + F.upsample(
|
|
|
|
out3, scale_factor=2, mode="nearest", align_mode=1) # 1/4
|
2020-10-13 17:13:33 +08:00
|
|
|
|
|
|
|
p5 = self.p5_conv(in5)
|
|
|
|
p4 = self.p4_conv(out4)
|
|
|
|
p3 = self.p3_conv(out3)
|
|
|
|
p2 = self.p2_conv(out2)
|
2020-11-06 18:15:44 +08:00
|
|
|
p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
|
|
|
|
p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
|
|
|
|
p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)
|
2020-10-13 17:13:33 +08:00
|
|
|
|
|
|
|
fuse = paddle.concat([p5, p4, p3, p2], axis=1)
|
|
|
|
return fuse
|
2022-04-22 19:26:56 +08:00
|
|
|
|
|
|
|
|
|
|
|
class CALayer(nn.Layer):
|
|
|
|
def __init__(self, in_channels, out_channels, kernel_size, shortcut=True):
|
|
|
|
super(CALayer, self).__init__()
|
|
|
|
weight_attr = paddle.nn.initializer.KaimingUniform()
|
|
|
|
self.in_conv = nn.Conv2D(
|
|
|
|
in_channels=in_channels,
|
|
|
|
out_channels=self.out_channels,
|
|
|
|
kernel_size=kernel_size,
|
|
|
|
padding=int(kernel_size // 2),
|
|
|
|
weight_attr=ParamAttr(initializer=weight_attr),
|
|
|
|
bias_attr=False)
|
|
|
|
self.se_block = SEModule(self.out_channels)
|
|
|
|
self.shortcut = shortcut
|
|
|
|
|
|
|
|
def forward(self, ins):
|
|
|
|
x = self.in_conv(ins)
|
|
|
|
if self.shortcut:
|
|
|
|
out = x + self.se_block(x)
|
|
|
|
else:
|
|
|
|
out = self.se_block(x)
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class CAFPN(nn.Layer):
|
|
|
|
def __init__(self, in_channels, out_channels, shortcut, **kwargs):
|
|
|
|
super(CAFPN, self).__init__()
|
|
|
|
|
|
|
|
self.ins_convs = []
|
|
|
|
self.inp_convs = []
|
|
|
|
|
|
|
|
for i in range(len(in_channels)):
|
|
|
|
self.ins_conv.append(
|
|
|
|
CALayer(
|
|
|
|
in_channels[i],
|
|
|
|
out_channels,
|
|
|
|
kernel_size=1,
|
|
|
|
shortcut=shortcut))
|
|
|
|
self.inp_conv.append(
|
|
|
|
CALayer(
|
|
|
|
out_channels,
|
|
|
|
out_channels // 4,
|
|
|
|
kernel_size=3,
|
|
|
|
shortcut=shortcut))
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
c2, c3, c4, c5 = x
|
|
|
|
|
|
|
|
in5 = self.ins_conv[3](c5)
|
|
|
|
in4 = self.ins_conv[2](c4)
|
|
|
|
in3 = self.ins_conv[1](c3)
|
|
|
|
in2 = self.ins_conv[0](c2)
|
|
|
|
|
|
|
|
out4 = in4 + F.upsample(
|
|
|
|
in5, scale_factor=2, mode="nearest", align_mode=1) # 1/16
|
|
|
|
out3 = in3 + F.upsample(
|
|
|
|
out4, scale_factor=2, mode="nearest", align_mode=1) # 1/8
|
|
|
|
out2 = in2 + F.upsample(
|
|
|
|
out3, scale_factor=2, mode="nearest", align_mode=1) # 1/4
|
|
|
|
|
|
|
|
p5 = self.inp_conv[3](in5)
|
|
|
|
p4 = self.inp_conv[2](out4)
|
|
|
|
p3 = self.inp_conv[1](out3)
|
|
|
|
p2 = self.inp_conv[0](out2)
|
|
|
|
|
|
|
|
p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
|
|
|
|
p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
|
|
|
|
p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)
|
|
|
|
|
|
|
|
fuse = paddle.concat([p5, p4, p3, p2], axis=1)
|
|
|
|
return fuse
|
2022-04-24 17:16:27 +08:00
|
|
|
|
|
|
|
|
|
|
|
class FEPAN(nn.Layer):
|
|
|
|
def __init__(self, in_channels, out_channels, **kwargs):
|
|
|
|
super(FEPAN, self).__init__()
|
|
|
|
self.out_channels = out_channels
|
|
|
|
weight_attr = paddle.nn.initializer.KaimingUniform()
|
|
|
|
|
|
|
|
self.ins_convs = []
|
|
|
|
self.inp_convs = []
|
|
|
|
# pan head
|
|
|
|
self.pan_head_conv = []
|
|
|
|
self.pan_lat_conv = []
|
|
|
|
|
|
|
|
for i in range(len(in_channels)):
|
|
|
|
self.ins_conv.append(
|
|
|
|
nn.Conv2D(
|
|
|
|
in_channels=in_channels[0],
|
|
|
|
out_channels=self.out_channels,
|
|
|
|
kernel_size=1,
|
|
|
|
weight_attr=ParamAttr(initializer=weight_attr),
|
|
|
|
bias_attr=False))
|
|
|
|
|
|
|
|
self.inp_conv.append(
|
|
|
|
ConvBNLayer(
|
|
|
|
in_channels=self.out_channels,
|
|
|
|
out_channels=self.out_channels // 4,
|
|
|
|
kernel_size=9,
|
|
|
|
padding=4))
|
|
|
|
|
|
|
|
if i > 0:
|
|
|
|
self.pan_head_conv.append(
|
|
|
|
nn.Conv2D(
|
|
|
|
in_channels=self.out_channels // 4,
|
|
|
|
out_channels=self.out_channels // 4,
|
|
|
|
kernel_size=3,
|
|
|
|
padding=1,
|
|
|
|
stride=2,
|
|
|
|
weight_attr=ParamAttr(initializer=weight_attr),
|
|
|
|
bias_attr=False))
|
|
|
|
self.pan_lat_conv.append(
|
|
|
|
ConvBNLayer(
|
|
|
|
in_channels=self.out_channels // 4,
|
|
|
|
out_channels=self.out_channels // 4,
|
|
|
|
kernel_size=9,
|
|
|
|
padding=4))
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
c2, c3, c4, c5 = x
|
|
|
|
|
|
|
|
in5 = self.ins_conv[3](c5)
|
|
|
|
in4 = self.ins_conv[2](c4)
|
|
|
|
in3 = self.ins_conv[1](c3)
|
|
|
|
in2 = self.ins_conv[0](c2)
|
|
|
|
|
|
|
|
out4 = in4 + F.upsample(
|
|
|
|
in5, scale_factor=2, mode="nearest", align_mode=1) # 1/16
|
|
|
|
out3 = in3 + F.upsample(
|
|
|
|
out4, scale_factor=2, mode="nearest", align_mode=1) # 1/8
|
|
|
|
out2 = in2 + F.upsample(
|
|
|
|
out3, scale_factor=2, mode="nearest", align_mode=1) # 1/4
|
|
|
|
|
|
|
|
f5 = self.inp_conv[3](in5)
|
|
|
|
f4 = self.inp_conv[2](out4)
|
|
|
|
f3 = self.inp_conv[1](out3)
|
|
|
|
f2 = self.inp_conv[0](out2)
|
|
|
|
|
|
|
|
pan3 = f3 + self.pan_head[0](f2)
|
|
|
|
pan4 = f4 + self.pan_head[1](pan3)
|
|
|
|
pan5 = f5 + self.pan_head[2](pan4)
|
|
|
|
|
|
|
|
p2 = self.pan_lat[0](f2)
|
|
|
|
p3 = self.pan_lat[1](pan3)
|
|
|
|
p4 = self.pan_lat[2](pan4)
|
|
|
|
p5 = self.pan_lat[3](pan5)
|
|
|
|
|
|
|
|
p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
|
|
|
|
p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
|
|
|
|
p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)
|
|
|
|
|
|
|
|
fuse = paddle.concat([p5, p4, p3, p2], axis=1)
|
|
|
|
return fuse
|