PaddleOCR/ppstructure/vqa/infer_ser_e2e.py

153 lines
5.1 KiB
Python
Raw Normal View History

2021-11-24 17:33:26 +08:00
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import json
import cv2
import numpy as np
from copy import deepcopy
from PIL import Image
import paddle
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification
from paddlenlp.transformers import LayoutLMModel, LayoutLMTokenizer, LayoutLMForTokenClassification
2021-11-24 17:33:26 +08:00
# relative reference
2021-12-27 00:10:58 +08:00
from vaq_utils import parse_args, get_image_file_list, draw_ser_results, get_bio_label_maps
2021-11-24 17:33:26 +08:00
2021-12-27 00:10:58 +08:00
from vaq_utils import pad_sentences, split_page, preprocess, postprocess, merge_preds_list_with_ocr_info
2021-11-24 17:33:26 +08:00
MODELS = {
'LayoutXLM':
(LayoutXLMTokenizer, LayoutXLMModel, LayoutXLMForTokenClassification),
'LayoutLM':
(LayoutLMTokenizer, LayoutLMModel, LayoutLMForTokenClassification)
}
2021-11-24 17:33:26 +08:00
def trans_poly_to_bbox(poly):
x1 = np.min([p[0] for p in poly])
x2 = np.max([p[0] for p in poly])
y1 = np.min([p[1] for p in poly])
y2 = np.max([p[1] for p in poly])
return [x1, y1, x2, y2]
def parse_ocr_info_for_ser(ocr_result):
ocr_info = []
for res in ocr_result:
ocr_info.append({
"text": res[1][0],
"bbox": trans_poly_to_bbox(res[0]),
"poly": res[0],
})
return ocr_info
2021-12-06 21:01:15 +08:00
class SerPredictor(object):
def __init__(self, args):
self.args = args
2021-12-06 21:01:15 +08:00
self.max_seq_length = args.max_seq_length
# init ser token and model
tokenizer_class, base_model_class, model_class = MODELS[
args.ser_model_type]
self.tokenizer = tokenizer_class.from_pretrained(
2021-12-06 21:01:15 +08:00
args.model_name_or_path)
self.model = model_class.from_pretrained(args.model_name_or_path)
2021-12-06 21:01:15 +08:00
self.model.eval()
# init ocr_engine
from paddleocr import PaddleOCR
2021-12-06 21:01:15 +08:00
self.ocr_engine = PaddleOCR(
rec_model_dir=args.rec_model_dir,
det_model_dir=args.det_model_dir,
2021-12-06 21:01:15 +08:00
use_angle_cls=False,
show_log=False)
# init dict
label2id_map, self.id2label_map = get_bio_label_maps(
args.label_map_path)
self.label2id_map_for_draw = dict()
for key in label2id_map:
if key.startswith("I-"):
self.label2id_map_for_draw[key] = label2id_map["B" + key[1:]]
else:
self.label2id_map_for_draw[key] = label2id_map[key]
def __call__(self, img):
ocr_result = self.ocr_engine.ocr(img, cls=False)
ocr_info = parse_ocr_info_for_ser(ocr_result)
inputs = preprocess(
tokenizer=self.tokenizer,
ori_img=img,
ocr_info=ocr_info,
max_seq_len=self.max_seq_length)
if self.args.ser_model_type == 'LayoutLM':
preds = self.model(
input_ids=inputs["input_ids"],
bbox=inputs["bbox"],
token_type_ids=inputs["token_type_ids"],
attention_mask=inputs["attention_mask"])
elif self.args.ser_model_type == 'LayoutXLM':
preds = self.model(
input_ids=inputs["input_ids"],
bbox=inputs["bbox"],
image=inputs["image"],
token_type_ids=inputs["token_type_ids"],
attention_mask=inputs["attention_mask"])
preds = preds[0]
2021-12-06 21:01:15 +08:00
preds = postprocess(inputs["attention_mask"], preds, self.id2label_map)
ocr_info = merge_preds_list_with_ocr_info(
ocr_info, inputs["segment_offset_id"], preds,
self.label2id_map_for_draw)
return ocr_info, inputs
2021-11-24 17:33:26 +08:00
2021-12-06 21:01:15 +08:00
if __name__ == "__main__":
args = parse_args()
os.makedirs(args.output_dir, exist_ok=True)
2021-11-24 17:33:26 +08:00
# get infer img list
infer_imgs = get_image_file_list(args.infer_imgs)
# loop for infer
2021-12-06 21:01:15 +08:00
ser_engine = SerPredictor(args)
2021-12-19 15:10:03 +08:00
with open(
os.path.join(args.output_dir, "infer_results.txt"),
"w",
encoding='utf-8') as fout:
2021-11-24 17:33:26 +08:00
for idx, img_path in enumerate(infer_imgs):
save_img_path = os.path.join(
args.output_dir,
os.path.splitext(os.path.basename(img_path))[0] + "_ser.jpg")
print("process: [{}/{}], save result to {}".format(
idx, len(infer_imgs), save_img_path))
2021-11-24 17:33:26 +08:00
img = cv2.imread(img_path)
2021-12-06 21:01:15 +08:00
result, _ = ser_engine(img)
2021-11-24 17:33:26 +08:00
fout.write(img_path + "\t" + json.dumps(
{
2021-12-06 21:01:15 +08:00
"ser_resule": result,
2021-11-24 17:33:26 +08:00
}, ensure_ascii=False) + "\n")
2021-12-06 21:01:15 +08:00
img_res = draw_ser_results(img, result)
cv2.imwrite(save_img_path, img_res)