PaddleOCR/PPOCRLabel/gen_ocr_train_val_test.py

146 lines
6.0 KiB
Python
Raw Normal View History

# coding:utf8
import os
import shutil
import random
import argparse
2021-10-21 18:39:14 +08:00
# 删除划分的训练集、验证集、测试集文件夹,重新创建一个空的文件夹
def isCreateOrDeleteFolder(path, flag):
flagPath = os.path.join(path, flag)
2021-10-21 18:39:14 +08:00
if os.path.exists(flagPath):
shutil.rmtree(flagPath)
2021-10-21 18:39:14 +08:00
os.makedirs(flagPath)
flagAbsPath = os.path.abspath(flagPath)
return flagAbsPath
def splitTrainVal(root, abs_train_root_path, abs_val_root_path, abs_test_root_path, train_txt, val_txt, test_txt, flag):
data_abs_path = os.path.abspath(root)
label_file_name = args.detLabelFileName if flag == "det" else args.recLabelFileName
label_file_path = os.path.join(data_abs_path, label_file_name)
with open(label_file_path, "r", encoding="UTF-8") as label_file:
label_file_content = label_file.readlines()
random.shuffle(label_file_content)
label_record_len = len(label_file_content)
for index, label_record_info in enumerate(label_file_content):
image_relative_path, image_label = label_record_info.split('\t')
image_name = os.path.basename(image_relative_path)
if flag == "det":
image_path = os.path.join(data_abs_path, image_name)
elif flag == "rec":
image_path = os.path.join(data_abs_path, args.recImageDirName, image_name)
train_val_test_ratio = args.trainValTestRatio.split(":")
train_ratio = eval(train_val_test_ratio[0]) / 10
val_ratio = train_ratio + eval(train_val_test_ratio[1]) / 10
cur_ratio = index / label_record_len
if cur_ratio < train_ratio:
image_copy_path = os.path.join(abs_train_root_path, image_name)
shutil.copy(image_path, image_copy_path)
train_txt.write("{}\t{}".format(image_copy_path, image_label))
elif cur_ratio >= train_ratio and cur_ratio < val_ratio:
image_copy_path = os.path.join(abs_val_root_path, image_name)
shutil.copy(image_path, image_copy_path)
val_txt.write("{}\t{}".format(image_copy_path, image_label))
else:
image_copy_path = os.path.join(abs_test_root_path, image_name)
shutil.copy(image_path, image_copy_path)
test_txt.write("{}\t{}".format(image_copy_path, image_label))
# 删掉存在的文件
def removeFile(path):
if os.path.exists(path):
os.remove(path)
def genDetRecTrainVal(args):
detAbsTrainRootPath = isCreateOrDeleteFolder(args.detRootPath, "train")
detAbsValRootPath = isCreateOrDeleteFolder(args.detRootPath, "val")
2021-10-21 18:39:14 +08:00
detAbsTestRootPath = isCreateOrDeleteFolder(args.detRootPath, "test")
recAbsTrainRootPath = isCreateOrDeleteFolder(args.recRootPath, "train")
recAbsValRootPath = isCreateOrDeleteFolder(args.recRootPath, "val")
2021-10-21 18:39:14 +08:00
recAbsTestRootPath = isCreateOrDeleteFolder(args.recRootPath, "test")
removeFile(os.path.join(args.detRootPath, "train.txt"))
removeFile(os.path.join(args.detRootPath, "val.txt"))
2021-10-21 18:39:14 +08:00
removeFile(os.path.join(args.detRootPath, "test.txt"))
removeFile(os.path.join(args.recRootPath, "train.txt"))
removeFile(os.path.join(args.recRootPath, "val.txt"))
2021-10-21 18:39:14 +08:00
removeFile(os.path.join(args.recRootPath, "test.txt"))
detTrainTxt = open(os.path.join(args.detRootPath, "train.txt"), "a", encoding="UTF-8")
detValTxt = open(os.path.join(args.detRootPath, "val.txt"), "a", encoding="UTF-8")
2021-10-21 18:39:14 +08:00
detTestTxt = open(os.path.join(args.detRootPath, "test.txt"), "a", encoding="UTF-8")
recTrainTxt = open(os.path.join(args.recRootPath, "train.txt"), "a", encoding="UTF-8")
recValTxt = open(os.path.join(args.recRootPath, "val.txt"), "a", encoding="UTF-8")
2021-10-21 18:39:14 +08:00
recTestTxt = open(os.path.join(args.recRootPath, "test.txt"), "a", encoding="UTF-8")
splitTrainVal(args.datasetRootPath, detAbsTrainRootPath, detAbsValRootPath, detAbsTestRootPath, detTrainTxt, detValTxt,
detTestTxt, "det")
for root, dirs, files in os.walk(args.datasetRootPath):
for dir in dirs:
if dir == 'crop_img':
splitTrainVal(root, recAbsTrainRootPath, recAbsValRootPath, recAbsTestRootPath, recTrainTxt, recValTxt,
recTestTxt, "rec")
else:
continue
break
if __name__ == "__main__":
2021-10-21 18:39:14 +08:00
# 功能描述:分别划分检测和识别的训练集、验证集、测试集
# 说明可以根据自己的路径和需求调整参数图像数据往往多人合作分批标注每一批图像数据放在一个文件夹内用PPOCRLabel进行标注
2021-10-21 18:39:14 +08:00
# 如此会有多个标注好的图像文件夹汇总并划分训练集、验证集、测试集的需求
parser = argparse.ArgumentParser()
parser.add_argument(
2021-10-21 18:39:14 +08:00
"--trainValTestRatio",
type=str,
default="6:2:2",
help="ratio of trainset:valset:testset")
parser.add_argument(
"--datasetRootPath",
type=str,
default="../train_data/",
help="path to the dataset marked by ppocrlabel, E.g, dataset folder named 1,2,3..."
)
parser.add_argument(
"--detRootPath",
type=str,
2021-10-21 18:39:14 +08:00
default="../train_data/det",
help="the path where the divided detection dataset is placed")
parser.add_argument(
"--recRootPath",
type=str,
2021-10-21 18:39:14 +08:00
default="../train_data/rec",
help="the path where the divided recognition dataset is placed"
)
parser.add_argument(
"--detLabelFileName",
type=str,
default="Label.txt",
help="the name of the detection annotation file")
parser.add_argument(
"--recLabelFileName",
type=str,
default="rec_gt.txt",
help="the name of the recognition annotation file"
)
parser.add_argument(
"--recImageDirName",
type=str,
default="crop_img",
help="the name of the folder where the cropped recognition dataset is located"
)
args = parser.parse_args()
genDetRecTrainVal(args)