PaddleOCR/deploy/hubserving/readme_en.md

248 lines
11 KiB
Markdown
Raw Normal View History

2020-12-01 17:46:50 +08:00
English | [简体中文](readme.md)
2022-03-30 19:07:07 +08:00
- [Service deployment based on PaddleHub Serving](#service-deployment-based-on-paddlehub-serving)
2022-03-30 22:46:35 +08:00
- [1. Update](#1-update)
- [2. Quick start service](#2-quick-start-service)
- [2.1 Prepare the environment](#21-prepare-the-environment)
- [2.2 Download inference model](#22-download-inference-model)
- [2.3 Install Service Module](#23-install-service-module)
- [2.4 Start service](#24-start-service)
- [2.4.1 Start with command line parameters (CPU only)](#241-start-with-command-line-parameters-cpu-only)
- [2.4.2 Start with configuration fileCPU、GPU](#242-start-with-configuration-filecpugpu)
- [3. Send prediction requests](#3-send-prediction-requests)
- [4. Returned result format](#4-returned-result-format)
- [5. User defined service module modification](#5-user-defined-service-module-modification)
2022-03-30 19:07:07 +08:00
2020-12-01 17:46:50 +08:00
PaddleOCR provides 2 service deployment methods:
- Based on **PaddleHub Serving**: Code path is "`./deploy/hubserving`". Please follow this tutorial.
2021-03-23 15:27:19 +08:00
- Based on **PaddleServing**: Code path is "`./deploy/pdserving`". Please refer to the [tutorial](../../deploy/pdserving/README.md) for usage.
2020-12-01 17:46:50 +08:00
# Service deployment based on PaddleHub Serving
2022-03-31 11:34:46 +08:00
The hubserving service deployment directory includes six service packages: text detection, text angle class, text recognition, text detection+text angle class+text recognition three-stage series connection, table recognition and PP-Structure. Please select the corresponding service package to install and start service according to your needs. The directory is as follows:
2020-12-01 17:46:50 +08:00
```
deploy/hubserving/
2022-03-30 19:24:45 +08:00
└─ ocr_det text detection module service package
└─ ocr_cls text angle class module service package
└─ ocr_rec text recognition module service package
2022-03-31 11:34:46 +08:00
└─ ocr_system text detection+text angle class+text recognition three-stage series connection service package
2022-03-30 19:24:45 +08:00
└─ structure_table table recognition service package
2022-03-30 22:15:12 +08:00
└─ structure_system PP-Structure service package
2020-12-01 17:46:50 +08:00
```
Each service pack contains 3 files. Take the 2-stage series connection service package as an example, the directory is as follows:
```
deploy/hubserving/ocr_system/
└─ __init__.py Empty file, required
└─ config.json Configuration file, optional, passed in as a parameter when using configuration to start the service
└─ module.py Main module file, required, contains the complete logic of the service
└─ params.py Parameter file, required, including parameters such as model path, pre- and post-processing parameters
```
2022-03-30 22:46:35 +08:00
## 1. Update
2020-12-01 17:46:50 +08:00
2022-03-30 22:46:35 +08:00
* 2022.03.30 add PP-Structure and table recognition services。
## 2. Quick start service
2020-12-01 17:46:50 +08:00
The following steps take the 2-stage series service as an example. If only the detection service or recognition service is needed, replace the corresponding file path.
2022-03-30 22:46:35 +08:00
### 2.1 Prepare the environment
2020-12-01 17:46:50 +08:00
```shell
# Install paddlehub
2021-07-23 13:38:27 +08:00
# python>3.6.2 is required bt paddlehub
2021-07-06 14:02:25 +08:00
pip3 install paddlehub==2.1.0 --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
2020-12-01 17:46:50 +08:00
```
2022-03-30 22:46:35 +08:00
### 2.2 Download inference model
Before installing the service module, you need to prepare the inference model and put it in the correct path. By default, the PP-OCRv2 models are used, and the default model path is:
2020-12-01 17:46:50 +08:00
```
2022-03-30 19:24:45 +08:00
text detection model: ./inference/ch_PP-OCRv2_det_infer/
text recognition model: ./inference/ch_PP-OCRv2_rec_infer/
text angle classifier: ./inference/ch_ppocr_mobile_v2.0_cls_infer/
tanle recognition: ./inference/en_ppocr_mobile_v2.0_table_structure_infer/
2020-12-01 17:46:50 +08:00
```
**The model path can be found and modified in `params.py`.** More models provided by PaddleOCR can be obtained from the [model library](../../doc/doc_en/models_list_en.md). You can also use models trained by yourself.
2022-03-30 22:46:35 +08:00
### 2.3 Install Service Module
2022-03-30 19:24:45 +08:00
PaddleOCR provides 5 kinds of service modules, install the required modules according to your needs.
2020-12-01 17:46:50 +08:00
* On Linux platform, the examples are as follows.
```shell
2022-03-30 19:24:45 +08:00
# Install the text detection service module:
2020-12-01 17:46:50 +08:00
hub install deploy/hubserving/ocr_det/
2022-03-30 19:24:45 +08:00
# Or, install the text angle class service module:
2020-12-01 17:46:50 +08:00
hub install deploy/hubserving/ocr_cls/
2022-03-30 19:24:45 +08:00
# Or, install the text recognition service module:
2020-12-01 17:46:50 +08:00
hub install deploy/hubserving/ocr_rec/
# Or, install the 2-stage series service module:
hub install deploy/hubserving/ocr_system/
2022-03-30 19:24:45 +08:00
# Or install table recognition service module
hub install deploy/hubserving/structure_table/
2022-03-30 22:15:12 +08:00
# Or install PP-Structure service module
hub install deploy/hubserving/structure_system/
2020-12-01 17:46:50 +08:00
```
* On Windows platform, the examples are as follows.
```shell
# Install the detection service module:
hub install deploy\hubserving\ocr_det\
# Or, install the angle class service module:
hub install deploy\hubserving\ocr_cls\
# Or, install the recognition service module:
hub install deploy\hubserving\ocr_rec\
# Or, install the 2-stage series service module:
hub install deploy\hubserving\ocr_system\
2022-03-30 19:24:45 +08:00
# Or install table recognition service module
hub install deploy/hubserving/structure_table/
2022-03-30 22:15:12 +08:00
# Or install PP-Structure service module
hub install deploy\hubserving\structure_system\
2020-12-01 17:46:50 +08:00
```
2022-03-30 22:46:35 +08:00
### 2.4 Start service
#### 2.4.1 Start with command line parameters (CPU only)
2020-12-01 17:46:50 +08:00
**start command**
```shell
$ hub serving start --modules [Module1==Version1, Module2==Version2, ...] \
--port XXXX \
--use_multiprocess \
--workers \
```
**parameters**
|parameters|usage|
2022-03-30 19:24:45 +08:00
|---|---|
2020-12-01 17:46:50 +08:00
|--modules/-m|PaddleHub Serving pre-installed model, listed in the form of multiple Module==Version key-value pairs<br>*`When Version is not specified, the latest version is selected by default`*|
|--port/-p|Service port, default is 8866|
|--use_multiprocess|Enable concurrent mode, the default is single-process mode, this mode is recommended for multi-core CPU machines<br>*`Windows operating system only supports single-process mode`*|
|--workers|The number of concurrent tasks specified in concurrent mode, the default is `2*cpu_count-1`, where `cpu_count` is the number of CPU cores|
For example, start the 2-stage series service:
```shell
hub serving start -m ocr_system
```
This completes the deployment of a service API, using the default port number 8866.
2022-03-30 22:46:35 +08:00
#### 2.4.2 Start with configuration fileCPU、GPU
2020-12-01 17:46:50 +08:00
**start command**
```shell
hub serving start --config/-c config.json
```
Wherein, the format of `config.json` is as follows:
```python
{
"modules_info": {
"ocr_system": {
"init_args": {
"version": "1.0.0",
"use_gpu": true
},
"predict_args": {
}
}
},
"port": 8868,
"use_multiprocess": false,
"workers": 2
}
```
- The configurable parameters in `init_args` are consistent with the `_initialize` function interface in `module.py`. Among them, **when `use_gpu` is `true`, it means that the GPU is used to start the service**.
- The configurable parameters in `predict_args` are consistent with the `predict` function interface in `module.py`.
**Note:**
- When using the configuration file to start the service, other parameters will be ignored.
- If you use GPU prediction (that is, `use_gpu` is set to `true`), you need to set the environment variable CUDA_VISIBLE_DEVICES before starting the service, such as: ```export CUDA_VISIBLE_DEVICES=0```, otherwise you do not need to set it.
- **`use_gpu` and `use_multiprocess` cannot be `true` at the same time.**
For example, use GPU card No. 3 to start the 2-stage series service:
```shell
export CUDA_VISIBLE_DEVICES=3
hub serving start -c deploy/hubserving/ocr_system/config.json
```
2022-03-30 22:46:35 +08:00
## 3. Send prediction requests
2020-12-01 17:46:50 +08:00
After the service starts, you can use the following command to send a prediction request to obtain the prediction result:
```shell
python tools/test_hubserving.py server_url image_path
```
Two parameters need to be passed to the script:
- **server_url**service addressformat of which is
`http://[ip_address]:[port]/predict/[module_name]`
2022-03-30 22:15:12 +08:00
For example, if using the configuration file to start the text angle classification, text detection, text recognition, detection+classification+recognition 3 stages, table recognition and PP-Structure service, then the `server_url` to send the request will be:
2022-03-30 19:24:45 +08:00
2020-12-01 17:46:50 +08:00
`http://127.0.0.1:8865/predict/ocr_det`
`http://127.0.0.1:8866/predict/ocr_cls`
`http://127.0.0.1:8867/predict/ocr_rec`
`http://127.0.0.1:8868/predict/ocr_system`
2022-03-30 19:24:45 +08:00
`http://127.0.0.1:8869/predict/structure_table`
2022-03-30 22:15:12 +08:00
`http://127.0.0.1:8870/predict/structure_system`
2022-03-30 19:07:07 +08:00
- **image_dir**Test image path, can be a single image path or an image directory path
- **visualize**Whether to visualize the results, the default value is False
2022-03-30 22:15:12 +08:00
- **output**The floder to save Visualization result, default value is `./hubserving_result`
2020-12-01 17:46:50 +08:00
**Eg.**
```shell
2022-04-08 16:00:13 +08:00
python tools/test_hubserving.py --server_url=http://127.0.0.1:8868/predict/ocr_system --image_dir=./doc/imgs/ --visualize=false`
2020-12-01 17:46:50 +08:00
```
2022-03-30 22:46:35 +08:00
## 4. Returned result format
2020-12-01 17:46:50 +08:00
The returned result is a list. Each item in the list is a dict. The dict may contain three fields. The information is as follows:
|field name|data type|description|
|----|----|----|
|angle|str|angle|
|text|str|text content|
|confidence|float|text recognition confidence|
|text_region|list|text location coordinates|
2022-03-30 19:24:45 +08:00
|html|str|table html str|
2022-03-30 22:15:12 +08:00
|regions|list|The result of layout analysis + table recognition + OCR, each item is a list, including `bbox` indicating area coordinates, `type` of area type and `res` of area results|
2020-12-01 17:46:50 +08:00
The fields returned by different modules are different. For example, the results returned by the text recognition service module do not contain `text_region`. The details are as follows:
2022-03-30 22:15:12 +08:00
| field name/module name | ocr_det | ocr_cls | ocr_rec | ocr_system | structure_table | structure_system |
| --- | --- | --- | --- | --- | --- |--- |
|angle| | ✔ | | ✔ | ||
|text| | |✔|✔| | ✔ |
|confidence| |✔ |✔| | | ✔|
|text_region| ✔| | |✔ | | ✔|
|html| | | | |✔ |✔|
|regions| | | | |✔ |✔ |
2020-12-01 17:46:50 +08:00
**Note** If you need to add, delete or modify the returned fields, you can modify the file `module.py` of the corresponding module. For the complete process, refer to the user-defined modification service module in the next section.
2022-03-30 22:46:35 +08:00
## 5. User defined service module modification
2020-12-01 17:46:50 +08:00
If you need to modify the service logic, the following steps are generally required (take the modification of `ocr_system` for example):
- 1. Stop service
```shell
hub serving stop --port/-p XXXX
```
- 2. Modify the code in the corresponding files, like `module.py` and `params.py`, according to the actual needs.
For example, if you need to replace the model used by the deployed service, you need to modify model path parameters `det_model_dir` and `rec_model_dir` in `params.py`. If you want to turn off the text direction classifier, set the parameter `use_angle_cls` to `False`. Of course, other related parameters may need to be modified at the same time. Please modify and debug according to the actual situation. It is suggested to run `module.py` directly for debugging after modification before starting the service test.
- 3. Uninstall old service module
```shell
hub uninstall ocr_system
```
- 4. Install modified service module
```shell
hub install deploy/hubserving/ocr_system/
```
- 5. Restart service
```shell
hub serving start -m ocr_system
```