2021-12-06 21:01:15 +08:00
|
|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
|
#
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
#
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
|
import numbers
|
|
|
|
|
import numpy as np
|
2022-01-05 19:03:45 +08:00
|
|
|
|
from collections import defaultdict
|
2021-12-06 21:01:15 +08:00
|
|
|
|
|
|
|
|
|
|
2022-01-05 19:03:45 +08:00
|
|
|
|
class DictCollator(object):
|
2021-12-07 09:58:20 +08:00
|
|
|
|
"""
|
|
|
|
|
data batch
|
|
|
|
|
"""
|
|
|
|
|
|
2021-12-06 21:01:15 +08:00
|
|
|
|
def __call__(self, batch):
|
2022-01-14 12:41:03 +08:00
|
|
|
|
# todo:support batch operators
|
2022-01-05 19:03:45 +08:00
|
|
|
|
data_dict = defaultdict(list)
|
2021-12-06 21:01:15 +08:00
|
|
|
|
to_tensor_keys = []
|
|
|
|
|
for sample in batch:
|
|
|
|
|
for k, v in sample.items():
|
|
|
|
|
if isinstance(v, (np.ndarray, paddle.Tensor, numbers.Number)):
|
|
|
|
|
if k not in to_tensor_keys:
|
|
|
|
|
to_tensor_keys.append(k)
|
|
|
|
|
data_dict[k].append(v)
|
|
|
|
|
for k in to_tensor_keys:
|
|
|
|
|
data_dict[k] = paddle.to_tensor(data_dict[k])
|
|
|
|
|
return data_dict
|
2022-01-05 19:03:45 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ListCollator(object):
|
|
|
|
|
"""
|
|
|
|
|
data batch
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __call__(self, batch):
|
2022-01-14 12:41:03 +08:00
|
|
|
|
# todo:support batch operators
|
2022-01-05 19:03:45 +08:00
|
|
|
|
data_dict = defaultdict(list)
|
|
|
|
|
to_tensor_idxs = []
|
|
|
|
|
for sample in batch:
|
|
|
|
|
for idx, v in enumerate(sample):
|
|
|
|
|
if isinstance(v, (np.ndarray, paddle.Tensor, numbers.Number)):
|
|
|
|
|
if idx not in to_tensor_idxs:
|
|
|
|
|
to_tensor_idxs.append(idx)
|
|
|
|
|
data_dict[idx].append(v)
|
|
|
|
|
for idx in to_tensor_idxs:
|
|
|
|
|
data_dict[idx] = paddle.to_tensor(data_dict[idx])
|
|
|
|
|
return list(data_dict.values())
|
2022-04-27 18:46:48 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SSLRotateCollate(object):
|
|
|
|
|
"""
|
|
|
|
|
bach: [
|
|
|
|
|
[(4*3xH*W), (4,)]
|
|
|
|
|
[(4*3xH*W), (4,)]
|
|
|
|
|
...
|
|
|
|
|
]
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __call__(self, batch):
|
|
|
|
|
output = [np.concatenate(d, axis=0) for d in zip(*batch)]
|
|
|
|
|
return output
|
2022-10-15 20:27:05 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DyMaskCollator(object):
|
|
|
|
|
"""
|
|
|
|
|
batch: [
|
|
|
|
|
image [batch_size, channel, maxHinbatch, maxWinbatch]
|
|
|
|
|
image_mask [batch_size, channel, maxHinbatch, maxWinbatch]
|
|
|
|
|
label [batch_size, maxLabelLen]
|
|
|
|
|
label_mask [batch_size, maxLabelLen]
|
|
|
|
|
...
|
|
|
|
|
]
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __call__(self, batch):
|
|
|
|
|
max_width, max_height, max_length = 0, 0, 0
|
|
|
|
|
bs, channel = len(batch), batch[0][0].shape[0]
|
|
|
|
|
proper_items = []
|
|
|
|
|
for item in batch:
|
|
|
|
|
if item[0].shape[1] * max_width > 1600 * 320 or item[0].shape[
|
|
|
|
|
2] * max_height > 1600 * 320:
|
|
|
|
|
continue
|
|
|
|
|
max_height = item[0].shape[1] if item[0].shape[
|
|
|
|
|
1] > max_height else max_height
|
|
|
|
|
max_width = item[0].shape[2] if item[0].shape[
|
|
|
|
|
2] > max_width else max_width
|
2022-10-17 15:04:42 +08:00
|
|
|
|
max_length = len(item[1]) if len(item[
|
|
|
|
|
1]) > max_length else max_length
|
2022-10-15 20:27:05 +08:00
|
|
|
|
proper_items.append(item)
|
|
|
|
|
|
|
|
|
|
images, image_masks = np.zeros(
|
|
|
|
|
(len(proper_items), channel, max_height, max_width),
|
|
|
|
|
dtype='float32'), np.zeros(
|
|
|
|
|
(len(proper_items), 1, max_height, max_width), dtype='float32')
|
|
|
|
|
labels, label_masks = np.zeros(
|
|
|
|
|
(len(proper_items), max_length), dtype='int64'), np.zeros(
|
|
|
|
|
(len(proper_items), max_length), dtype='int64')
|
|
|
|
|
|
|
|
|
|
for i in range(len(proper_items)):
|
|
|
|
|
_, h, w = proper_items[i][0].shape
|
|
|
|
|
images[i][:, :h, :w] = proper_items[i][0]
|
|
|
|
|
image_masks[i][:, :h, :w] = 1
|
2022-10-17 15:04:42 +08:00
|
|
|
|
l = len(proper_items[i][1])
|
2022-10-15 20:27:05 +08:00
|
|
|
|
labels[i][:l] = proper_items[i][1]
|
|
|
|
|
label_masks[i][:l] = 1
|
|
|
|
|
|
|
|
|
|
return images, image_masks, labels, label_masks
|