fix hyperlinks (#14074)
parent
07603421c2
commit
0a610f962b
|
@ -36,7 +36,7 @@ PaddleOCR 由 [PMC](https://github.com/PaddlePaddle/PaddleOCR/issues/12122) 监
|
|||
* 🎨 [**模型丰富一键调用**](https://paddlepaddle.github.io/PaddleOCR/latest/paddlex/quick_start.html):将文本图像智能分析、通用OCR、通用版面解析、通用表格识别、公式识别、印章文本识别涉及的**17个模型**整合为6条模型产线,通过极简的**Python API一键调用**,快速体验模型效果。此外,同一套API,也支持图像分类、目标检测、图像分割、时序预测等共计**200+模型**,形成20+单功能模块,方便开发者进行**模型组合**使用。
|
||||
* 🚀[**提高效率降低门槛**](https://paddlepaddle.github.io/PaddleOCR/latest/paddlex/overview.html):提供基于**统一命令**和**图形界面**两种方式,实现模型简洁高效的使用、组合与定制。支持**高性能推理、服务化部署和端侧部署**等多种部署方式。此外,对于各种主流硬件如**英伟达GPU、昆仑芯、昇腾、寒武纪和海光**等,进行模型开发时,都可以**无缝切换**。
|
||||
|
||||
* 支持文档场景信息抽取v3([PP-ChatOCRv3-doc](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/information_extration_pipelines/document_scene_information_extraction.md))、基于RT-DETR的[高精度版面区域检测模型](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/layout_detection.md)和PicoDet的[高效率版面区域检测模型](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/layout_detection.md)、高精度表格结构识别模型[SLANet_Plus](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/table_structure_recognition.md)、文本图像矫正模型[UVDoc](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/text_image_unwarping.md)、公式识别模型[LatexOCR](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/formula_recognition.md)、基于PP-LCNet的[文档图像方向分类模型](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/doc_img_orientation_classification.md)
|
||||
* 支持文档场景信息抽取v3[PP-ChatOCRv3-doc](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/information_extraction_pipelines/document_scene_information_extraction.md)、基于RT-DETR的[高精度版面区域检测模型](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/layout_detection.md)和PicoDet的[高效率版面区域检测模型](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/layout_detection.md)、高精度表格结构识别模型[SLANet_Plus](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/table_structure_recognition.md)、文本图像矫正模型[UVDoc](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/text_image_unwarping.md)、公式识别模型[LatexOCR](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/formula_recognition.md)、基于PP-LCNet的[文档图像方向分类模型](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/doc_img_orientation_classification.md)
|
||||
|
||||
- **🔥2024.7 添加 PaddleOCR 算法模型挑战赛冠军方案**:
|
||||
- 赛题一:OCR 端到端识别任务冠军方案——[场景文本识别算法-SVTRv2](https://paddlepaddle.github.io/PaddleOCR/latest/algorithm/text_recognition/algorithm_rec_svtrv2.html);
|
||||
|
@ -45,7 +45,7 @@ PaddleOCR 由 [PMC](https://github.com/PaddlePaddle/PaddleOCR/issues/12122) 监
|
|||
|
||||
## 🌟 特性
|
||||
|
||||
支持多种 OCR 相关前沿算法,在此基础上打造产业级特色模型PP-、PP-Structure和PP-ChatOCR,并打通数据生产、模型训练、压缩、预测部署全流程。
|
||||
支持多种 OCR 相关前沿算法,在此基础上打造产业级特色模型PP-OCR、PP-Structure和PP-ChatOCR,并打通数据生产、模型训练、压缩、预测部署全流程。
|
||||
|
||||
<div align="center">
|
||||
<img src="./docs/images/ppocrv4.png">
|
||||
|
|
|
@ -35,7 +35,7 @@ PaddleOCR is being oversight by a [PMC](https://github.com/PaddlePaddle/PaddleOC
|
|||
|
||||
* 🚀 [**High Efficiency and Low barrier of entry**](https://paddlepaddle.github.io/PaddleOCR/latest/en/paddlex/overview.html): Provides two methods based on **unified commands** and **GUI** to achieve simple and efficient use, combination, and customization of models. Supports multiple deployment methods such as **high-performance inference, service-oriented deployment, and edge deployment**. Additionally, for various mainstream hardware such as **NVIDIA GPU, Kunlunxin XPU, Ascend NPU, Cambricon MLU, and Haiguang DCU**, models can be developed with **seamless switching**.
|
||||
|
||||
* Supports [PP-ChatOCRv3-doc](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/information_extration_pipelines/document_scene_information_extraction_en.md), [high-precision layout detection model based on RT-DETR](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/layout_detection_en.md) and [high-efficiency layout area detection model based on PicoDet](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/layout_detection_en.md), [high-precision table structure recognition model](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/table_structure_recognition_en.md), text image unwarping model [UVDoc](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/text_image_unwarping_en.md), formula recognition model [LatexOCR](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/formula_recognition_en.md), and [document image orientation classification model based on PP-LCNet](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/doc_img_orientation_classification_en.md).
|
||||
* Supports [PP-ChatOCRv3-doc](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/information_extraction_pipelines/document_scene_information_extraction_en.md), [high-precision layout detection model based on RT-DETR](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/layout_detection_en.md) and [high-efficiency layout area detection model based on PicoDet](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/layout_detection_en.md), [high-precision table structure recognition model](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/table_structure_recognition_en.md), text image unwarping model [UVDoc](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/text_image_unwarping_en.md), formula recognition model [LatexOCR](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/formula_recognition_en.md), and [document image orientation classification model based on PP-LCNet](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/doc_img_orientation_classification_en.md).
|
||||
|
||||
- **🔥2024.7 Added PaddleOCR Algorithm Model Challenge Champion Solutions**:
|
||||
- Challenge One, OCR End-to-End Recognition Task Champion Solution: [Scene Text Recognition Algorithm-SVTRv2](https://paddlepaddle.github.io/PaddleOCR/algorithm/text_recognition/algorithm_rec_svtrv2.html);
|
||||
|
|
|
@ -37,7 +37,7 @@ PaddleOCR is being oversight by a [PMC](https://github.com/PaddlePaddle/PaddleOC
|
|||
|
||||
* 🚀 [**High Efficiency and Low barrier of entry**](https://paddlepaddle.github.io/PaddleOCR/latest/en/paddlex/overview.html): Provides two methods based on **unified commands** and **GUI** to achieve simple and efficient use, combination, and customization of models. Supports multiple deployment methods such as **high-performance inference, service-oriented deployment, and edge deployment**. Additionally, for various mainstream hardware such as **NVIDIA GPU, Kunlunxin XPU, Ascend NPU, Cambricon MLU, and Haiguang DCU**, models can be developed with **seamless switching**.
|
||||
|
||||
* Supports [PP-ChatOCRv3-doc](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/information_extration_pipelines/document_scene_information_extraction_en.md), [high-precision layout detection model based on RT-DETR](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/layout_detection_en.md) and [high-efficiency layout area detection model based on PicoDet](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/layout_detection_en.md), [high-precision table structure recognition model](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/table_structure_recognition_en.md), text image unwarping model [UVDoc](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/text_image_unwarping_en.md), formula recognition model [LatexOCR](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/formula_recognition_en.md), and [document image orientation classification model based on PP-LCNet](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/doc_img_orientation_classification_en.md).
|
||||
* Supports [PP-ChatOCRv3-doc](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/information_extraction_pipelines/document_scene_information_extraction_en.md), [high-precision layout detection model based on RT-DETR](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/layout_detection_en.md) and [high-efficiency layout area detection model based on PicoDet](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/layout_detection_en.md), [high-precision table structure recognition model](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/table_structure_recognition_en.md), text image unwarping model [UVDoc](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/text_image_unwarping_en.md), formula recognition model [LatexOCR](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/formula_recognition_en.md), and [document image orientation classification model based on PP-LCNet](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/doc_img_orientation_classification_en.md).
|
||||
|
||||
- **🔥2023.8.7 Release PaddleOCR[release/2.7](https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.7)**
|
||||
|
||||
|
|
|
@ -36,7 +36,7 @@ PaddleOCR 由 [PMC](https://github.com/PaddlePaddle/PaddleOCR/issues/12122) 监
|
|||
* 🎨 [**模型丰富一键调用**](https://paddlepaddle.github.io/PaddleOCR/latest/paddlex/quick_start.html):将文本图像智能分析、通用OCR、通用版面解析、通用表格识别、公式识别、印章文本识别涉及的**17个模型**整合为6条模型产线,通过极简的**Python API一键调用**,快速体验模型效果。此外,同一套API,也支持图像分类、目标检测、图像分割、时序预测等共计**200+模型**,形成20+单功能模块,方便开发者进行**模型组合**使用。
|
||||
* 🚀[**提高效率降低门槛**](https://paddlepaddle.github.io/PaddleOCR/latest/paddlex/overview.html):提供基于**统一命令**和**图形界面**两种方式,实现模型简洁高效的使用、组合与定制。支持**高性能推理、服务化部署和端侧部署**等多种部署方式。此外,对于各种主流硬件如**英伟达GPU、昆仑芯、昇腾、寒武纪和海光**等,进行模型开发时,都可以**无缝切换**。
|
||||
|
||||
* 支持文档场景信息抽取v3([PP-ChatOCRv3-doc](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/information_extration_pipelines/document_scene_information_extraction.md))、基于RT-DETR的[高精度版面区域检测模型](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/layout_detection.md)和PicoDet的[高效率版面区域检测模型](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/layout_detection.md)、高精度表格结构识别模型[SLANet_Plus](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/table_structure_recognition.md)、文本图像矫正模型[UVDoc](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/text_image_unwarping.md)、公式识别模型[LatexOCR](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/formula_recognition.md)、基于PP-LCNet的[文档图像方向分类模型](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/doc_img_orientation_classification.md)
|
||||
* 支持文档场景信息抽取v3[PP-ChatOCRv3-doc](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/information_extraction_pipelines/document_scene_information_extraction.md)、基于RT-DETR的[高精度版面区域检测模型](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/layout_detection.md)和PicoDet的[高效率版面区域检测模型](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/layout_detection.md)、高精度表格结构识别模型[SLANet_Plus](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/table_structure_recognition.md)、文本图像矫正模型[UVDoc](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/text_image_unwarping.md)、公式识别模型[LatexOCR](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/formula_recognition.md)、基于PP-LCNet的[文档图像方向分类模型](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/doc_img_orientation_classification.md)
|
||||
|
||||
- **🔥2024.7 添加 PaddleOCR 算法模型挑战赛冠军方案**:
|
||||
- 赛题一:OCR 端到端识别任务冠军方案——[场景文本识别算法-SVTRv2](https://paddlepaddle.github.io/PaddleOCR/latest/algorithm/text_recognition/algorithm_rec_svtrv2.html);
|
||||
|
|
|
@ -9,7 +9,7 @@ The All-in-One development tool [PaddleX](https://github.com/PaddlePaddle/Paddle
|
|||
> **Note**: PaddleX is committed to achieving pipeline-level model training, inference, and deployment. A model pipeline refers to a series of predefined development processes for specific AI tasks, including combinations of single models (single-function modules) that can independently complete a type of task.
|
||||
## 2. OCR-Related Capability Support
|
||||
|
||||
In PaddleX, all 6 OCR-related pipelines support **local inference**, and some pipelines support **online experience**. You can quickly experience the pre-trained model effects of each pipeline. If you are satisfied with the pre-trained model effects of a pipeline, you can directly proceed with [high-performance inference](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/high_performance_deploy_en.md)/[service-oriented deployment](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/service_deploy_en.md)/[edge deployment](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/lite_deploy_en.md). If not satisfied, you can also use the **custom development** capabilities of the pipeline to improve the effects. For the complete pipeline development process, please refer to [PaddleX Pipeline Usage Overview](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/pipeline_develop_guide_en.md) or the tutorials for each pipeline.
|
||||
In PaddleX, all 6 OCR-related pipelines support **local inference**, and some pipelines support **online experience**. You can quickly experience the pre-trained model effects of each pipeline. If you are satisfied with the pre-trained model effects of a pipeline, you can directly proceed with [high-performance inference](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/high_performance_inference_en.md)/[service-oriented deployment](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/service_deploy_en.md)/[edge deployment](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/edge_deploy_en.md). If not satisfied, you can also use the **custom development** capabilities of the pipeline to improve the effects. For the complete pipeline development process, please refer to [PaddleX Pipeline Usage Overview](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/pipeline_develop_guide_en.md) or the tutorials for each pipeline.
|
||||
|
||||
In addition, PaddleX provides developers with a full-process efficient model training and deployment tool based on a [cloud-based GUI](https://aistudio.baidu.com/pipeline/mine). Developers **do not need code development**, just need to prepare a dataset that meets the pipeline requirements to **quickly start model training**. For details, please refer to the tutorial ["Developing Industrial-level AI Models with Zero Barrier"](https://aistudio.baidu.com/practical/introduce/546656605663301).
|
||||
|
||||
|
@ -119,7 +119,7 @@ In addition, PaddleX provides developers with a full-process efficient model tra
|
|||
|
||||
- **OCR Pipeline**: [Tutorial](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/ocr_pipelines/OCR_en.md)
|
||||
- **Table Recognition Pipeline**: [Tutorial](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/ocr_pipelines/table_recognition_en.md)
|
||||
- **PP-ChatOCRv3-doc Pipeline**: [Tutorial](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/information_extration_pipelines/document_scene_information_extraction_en.md)
|
||||
- **PP-ChatOCRv3-doc Pipeline**: [Tutorial](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/information_extraction_pipelines/document_scene_information_extraction_en.md)
|
||||
- **Layout Parsing Pipeline**: [Tutorial](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/ocr_pipelines/layout_parsing_en.md)
|
||||
- **Formula Recognition Pipeline**: [Tutorial](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/ocr_pipelines/formula_recognition_en.md)
|
||||
- **Seal Recognition Pipeline**: [Tutorial](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/ocr_pipelines/seal_recognition_en.md)
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
|
||||
## 2. OCR相关能力支持
|
||||
|
||||
PaddleX中OCR相关的6条产线均支持本地**快速推理**,部分产线支持**在线体验**,您可以快速体验各个产线的预训练模型效果,如果您对产线的预训练模型效果满意,可以直接对产线进行[高性能推理](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/high_performance_deploy.md)/[服务化部署](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/service_deploy.md)/[端侧部署](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/lite_deploy.md),如果不满意,您也可以使用产线的**二次开发**能力,提升效果。完整的产线开发流程请参考[PaddleX产线使用概览](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/pipeline_develop_guide.md)或各产线使用教程。
|
||||
PaddleX中OCR相关的6条产线均支持本地**快速推理**,部分产线支持**在线体验**,您可以快速体验各个产线的预训练模型效果,如果您对产线的预训练模型效果满意,可以直接对产线进行[高性能推理](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/high_performance_inference.md)/[服务化部署](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/service_deploy.md)/[端侧部署](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/edge_deploy.md),如果不满意,您也可以使用产线的**二次开发**能力,提升效果。完整的产线开发流程请参考[PaddleX产线使用概览](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/pipeline_develop_guide.md)或各产线使用教程。
|
||||
|
||||
此外,PaddleX为开发者提供了基于[云端图形化开发界面](https://aistudio.baidu.com/pipeline/mine)的全流程开发工具, 详细请参考[教程《零门槛开发产业级AI模型》](https://aistudio.baidu.com/practical/introduce/546656605663301)
|
||||
|
||||
|
@ -123,7 +123,7 @@ PaddleX中OCR相关的6条产线均支持本地**快速推理**,部分产线
|
|||
|
||||
- **通用OCR产线**: [使用教程](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/ocr_pipelines/OCR.md)
|
||||
- **通用表格识别产线**: [使用教程](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/ocr_pipelines/table_recognition.md)
|
||||
- **文档场景信息抽取v3产线**: [使用教程](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/information_extration_pipelines/document_scene_information_extraction.md)
|
||||
- **文档场景信息抽取v3产线**: [使用教程](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/information_extraction_pipelines/document_scene_information_extraction.md)
|
||||
- **通用版面解析**: [使用教程](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/ocr_pipelines/layout_parsing.md)
|
||||
- **公式识别**: [使用教程](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/ocr_pipelines/formula_recognition.md)
|
||||
- **印章文本识别**: [使用教程](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/ocr_pipelines/seal_recognition.md)
|
||||
|
|
|
@ -52,8 +52,8 @@ For other pipelines in Python scripts, just adjust the `pipeline` parameter of t
|
|||
|
||||
| Pipeline Name | Corresponding Parameter | Detailed Explanation |
|
||||
|------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------|
|
||||
| PP-ChatOCRv3-doc | `PP-ChatOCRv3-doc` | [Python Script Usage for PP-ChatOCRv3-doc Pipeline](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/information_extration_pipelines/document_scene_information_extraction_en.md#22-local-experience) |
|
||||
| General OCR | `OCR` | [Python Script Usage for General OCR Pipeline](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/ocr_pipelines/OCR_en.md#22-local-experience) |
|
||||
| PP-ChatOCRv3-doc | `PP-ChatOCRv3-doc` | [Python Script Usage for PP-ChatOCRv3-doc Pipeline](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/information_extraction_pipelines/document_scene_information_extraction_en.md) |
|
||||
| OCR | `OCR` | [Python Script Usage for General OCR Pipeline](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/ocr_pipelines/OCR_en.md#22-local-experience) |
|
||||
| Table Recognition | `table_recognition` | [Python Script Usage for Table Recognition Pipeline](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/ocr_pipelines/table_recognition_en.md#22-local-experience) |
|
||||
| Layout Parsing | `layout_parsing` | [Python Script Usage for Layout Parsing Pipeline](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/ocr_pipelines/layout_parsing_en.md#22-local-experience) |
|
||||
| Formula Recognition | `formula_recognition` | [Python Script Usage for Formula Recognition Pipeline](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/ocr_pipelines/formula_recognition_en.md#2-quick-start) |
|
||||
|
|
|
@ -57,7 +57,7 @@ for res in output:
|
|||
|
||||
| 产线名称 | 对应参数 | 详细说明 |
|
||||
|--------------------|------------------------|---------------------------------------------------------------------------------------------------------------|
|
||||
| 文档场景信息抽取v3 | `PP-ChatOCRv3-doc` | [文档场景信息抽取v3产线Python脚本使用说明](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/information_extration_pipelines/document_scene_information_extraction.md#22-本地体验) |
|
||||
| 文档场景信息抽取v3 | `PP-ChatOCRv3-doc` | [文档场景信息抽取v3产线Python脚本使用说明](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/information_extraction_pipelines/document_scene_information_extraction.md#22-本地体验) |
|
||||
| 通用OCR | `OCR` | [通用OCR产线Python脚本使用说明](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/ocr_pipelines/OCR.md#222-python脚本方式集成) |
|
||||
| 通用表格识别 | `table_recognition` | [通用表格识别产线Python脚本使用说明](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/ocr_pipelines/table_recognition.md#22-python脚本方式集成) |
|
||||
| 通用版面解析 | `layout_parsing` | [通用版面解析产线Python脚本使用说明](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/ocr_pipelines/layout_parsing.md#22-python脚本方式集成) |
|
||||
|
@ -86,8 +86,25 @@ paddlex --pipeline OCR --input https://paddle-model-ecology.bj.bcebos.com/paddle
|
|||
运行结果如下:
|
||||
|
||||
```bash
|
||||
{'img_path': '/root/.paddlex/predict_input/general_ocr_002.png', 'dt_polys': [[[5, 12], [88, 10], [88, 29], [5, 31]], [[208, 14], [249, 14], [249, 22], [208, 22]], [[695, 15], [824, 15], [824, 60], [695, 60]], [[158, 27], [355, 23], [356, 70], [159, 73]], [[421, 25], [659, 19], [660, 59], [422, 64]], [[337, 104], [460, 102], [460, 127], [337, 129]], [[486, 103], [650, 100], [650, 125], [486, 128]], [[675, 98], [835, 94], [835, 119], [675, 124]], [[64, 114], [192, 110], [192, 131], [64, 134]], [[210, 108], [318, 106], [318, 128], [210, 130]], [[82, 140], [214, 138], [214, 163], [82, 165]], [[226, 136], [328, 136], [328, 161], [226, 161]], [[404, 134], [432, 134], [432, 161], [404, 161]], [[509, 131], [570, 131], [570, 158], [509, 158]], [[730, 138], [771, 138], [771, 154], [730, 154]], [[806, 136], [817, 136], [817, 146], [806, 146]], [[342, 175], [470, 173], [470, 197], [342, 199]], [[486, 173], [616, 171], [616, 196], [486, 198]], [[677, 169], [813, 166], [813, 191], [677, 194]], [[65, 181], [170, 177], [171, 202], [66, 205]], [[96, 208], [171, 205], [172, 230], [97, 232]], [[336, 220], [476, 215], [476, 237], [336, 242]], [[507, 217], [554, 217], [554, 236], [507, 236]], [[87, 229], [204, 227], [204, 251], [87, 254]], [[344, 240], [483, 236], [483, 258], [344, 262]], [[66, 252], [174, 249], [174, 271], [66, 273]], [[75, 279], [264, 272], [265, 297], [76, 303]], [[459, 297], [581, 295], [581, 320], [459, 322]], [[101, 314], [210, 311], [210, 337], [101, 339]], [[68, 344], [165, 340], [166, 365], [69, 368]], [[345, 350], [662, 346], [662, 368], [345, 371]], [[100, 459], [832, 444], [832, 465], [100, 480]]], 'dt_scores': [0.8183103704439653, 0.7609575621092027, 0.8662357274035412, 0.8619508290334809, 0.8495855993183273, 0.8676840017933314, 0.8807986687956436, 0.822308525056085, 0.8686617037621976, 0.8279022169854463, 0.952332847006758, 0.8742692553015098, 0.8477013022907575, 0.8528771493227294, 0.7622965906848765, 0.8492388224448705, 0.8344203789965632, 0.8078477124353284, 0.6300434587457232, 0.8359967356998494, 0.7618617265751318, 0.9481573079350023, 0.8712182945408912, 0.837416955846334, 0.8292475059403851, 0.7860382856406026, 0.7350527486717117, 0.8701022267947695, 0.87172526903969, 0.8779847108088126, 0.7020437651809734, 0.6611684983372949], 'rec_text': ['www.997', '151', 'PASS', '登机牌', 'BOARDING', '舱位 CLASS', '序号SERIALNO.', '座位号SEATNO', '航班 FLIGHT', '日期DATE', 'MU 2379', '03DEC', 'W', '035', 'F', '1', '始发地FROM', '登机口 GATE', '登机时间BDT', '目的地TO', '福州', 'TAIYUAN', 'G11', 'FUZHOU', '身份识别IDNO.', '姓名NAME', 'ZHANGQIWEI', '票号TKTNO.', '张祺伟', '票价FARE', 'ETKT7813699238489/1', '登机口于起飞前10分钟关闭GATESCLOSE1OMINUTESBEFOREDEPARTURETIME'], 'rec_score': [0.9617719054222107, 0.4199012815952301, 0.9652514457702637, 0.9978302121162415, 0.9853208661079407, 0.9445787072181702, 0.9714463949203491, 0.9841841459274292, 0.9564052224159241, 0.9959094524383545, 0.9386572241783142, 0.9825271368026733, 0.9356589317321777, 0.9985442161560059, 0.3965512812137604, 0.15236201882362366, 0.9976775050163269, 0.9547433257102966, 0.9974752068519592, 0.9646636843681335, 0.9907559156417847, 0.9895358681678772, 0.9374122023582458, 0.9909093379974365, 0.9796401262283325, 0.9899340271949768, 0.992210865020752, 0.9478569626808167, 0.9982215762138367, 0.9924325942993164, 0.9941263794898987, 0.96443772315979]}
|
||||
......
|
||||
{
|
||||
'input_path': '/root/.paddlex/predict_input/general_ocr_002.png',
|
||||
'dt_polys': [array([[161, 27],
|
||||
[353, 22],
|
||||
[354, 69],
|
||||
[162, 74]], dtype=int16), array([[426, 26],
|
||||
[657, 21],
|
||||
[657, 58],
|
||||
[426, 62]], dtype=int16), array([[702, 18],
|
||||
[822, 13],
|
||||
[824, 57],
|
||||
[704, 62]], dtype=int16), array([[341, 106],
|
||||
[405, 106],
|
||||
[405, 128],
|
||||
[341, 128]], dtype=int16)
|
||||
...],
|
||||
'dt_scores': [0.758478200014338, 0.7021546472698513, 0.8536622648391111, 0.8619181462164781, 0.8321051217096188, 0.8868756173427551, 0.7982964727675609, 0.8289939036796322, 0.8289428877522524, 0.8587063317632897, 0.7786755892491615, 0.8502032769081344, 0.8703346500042997, 0.834490931790065, 0.908291103353393, 0.7614978661708064, 0.8325774055997542, 0.7843421347676149, 0.8680889482955594, 0.8788859304537682, 0.8963341277518075, 0.9364654810069546, 0.8092413027028257, 0.8503743089091863, 0.7920740420391101, 0.7592224394793805, 0.7920547400069311, 0.6641757962457888, 0.8650289477605955, 0.8079483304467047, 0.8532207681055275, 0.8913377034754717],
|
||||
'rec_text': ['登机牌', 'BOARDING', 'PASS', '舱位', 'CLASS', '序号 SERIALNO.', '座位号', '日期 DATE', 'SEAT NO', '航班 FLIGHW', '035', 'MU2379', '始发地', 'FROM', '登机口', 'GATE', '登机时间BDT', '目的地TO', '福州', 'TAIYUAN', 'G11', 'FUZHOU', '身份识别IDNO', '姓名NAME', 'ZHANGQIWEI', 票号TKTNO', '张祺伟', '票价FARE', 'ETKT7813699238489/1', '登机口于起飞前10分钟关闭GATESCLOSE10MINUTESBEFOREDEPARTURETIME'],
|
||||
'rec_score': [0.9985831379890442, 0.999696917533874512, 0.9985735416412354, 0.9842517971992493, 0.9383274912834167, 0.9943678975105286, 0.9419361352920532, 0.9221674799919128, 0.9555020928382874, 0.9870321154594421, 0.9664073586463928, 0.9988052248954773, 0.9979352355003357, 0.9985110759735107, 0.9943482875823975, 0.9991195797920227, 0.9936401844024658, 0.9974591135978699, 0.9743705987930298, 0.9980487823486328, 0.9874696135520935, 0.9900962710380554, 0.9952947497367859, 0.9950481653213501, 0.989926815032959, 0.9915552139282227, 0.9938777685165405, 0.997239887714386, 0.9963340759277344, 0.9936134815216064, 0.97223961353302]}
|
||||
```
|
||||
|
||||
可视化结果如下:
|
||||
|
|
|
@ -13,7 +13,7 @@ hide:
|
|||
|
||||
* 🚀 [**High Efficiency and Low barrier of entry**](https://paddlepaddle.github.io/PaddleOCR/latest/en/paddlex/overview.html): Provides two methods based on **unified commands** and **GUI** to achieve simple and efficient use, combination, and customization of models. Supports multiple deployment methods such as **high-performance inference, service-oriented deployment, and edge deployment**. Additionally, for various mainstream hardware such as **NVIDIA GPU, Kunlunxin XPU, Ascend NPU, Cambricon MLU, and Haiguang DCU**, models can be developed with **seamless switching**.
|
||||
|
||||
* Supports [PP-ChatOCRv3-doc](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/information_extration_pipelines/document_scene_information_extraction_en.md), [high-precision layout detection model based on RT-DETR](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/layout_detection_en.md) and [high-efficiency layout area detection model based on PicoDet](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/layout_detection_en.md), [high-precision table structure recognition model](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/table_structure_recognition_en.md), text image unwarping model [UVDoc](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/text_image_unwarping_en.md), formula recognition model [LatexOCR](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/formula_recognition_en.md), and [document image orientation classification model based on PP-LCNet](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/doc_img_orientation_classification_en.md).
|
||||
* Supports [PP-ChatOCRv3-doc](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/information_extraction_pipelines/document_scene_information_extraction_en.md), [high-precision layout detection model based on RT-DETR](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/layout_detection_en.md) and [high-efficiency layout area detection model based on PicoDet](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/layout_detection_en.md), [high-precision table structure recognition model](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/table_structure_recognition_en.md), text image unwarping model [UVDoc](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/text_image_unwarping_en.md), formula recognition model [LatexOCR](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/formula_recognition_en.md), and [document image orientation classification model based on PP-LCNet](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/doc_img_orientation_classification_en.md).
|
||||
|
||||
#### 2022.5.9 release PaddleOCR v2.5, including
|
||||
|
||||
|
|
|
@ -12,7 +12,7 @@ hide:
|
|||
* 🎨 [**模型丰富一键调用**](https://paddlepaddle.github.io/PaddleOCR/latest/paddlex/quick_start.html):将文本图像智能分析、通用OCR、通用版面解析、通用表格识别、公式识别、印章文本识别涉及的**17个模型**整合为6条模型产线,通过极简的**Python API一键调用**,快速体验模型效果。此外,同一套API,也支持图像分类、目标检测、图像分割、时序预测等共计**200+模型**,形成20+单功能模块,方便开发者进行**模型组合**使用。
|
||||
* 🚀[**提高效率降低门槛**](https://paddlepaddle.github.io/PaddleOCR/latest/paddlex/overview.html):提供基于**统一命令**和**图形界面**两种方式,实现模型简洁高效的使用、组合与定制。支持**高性能推理、服务化部署和端侧部署**等多种部署方式。此外,对于各种主流硬件如**英伟达GPU、昆仑芯、昇腾、寒武纪和海光**等,进行模型开发时,都可以**无缝切换**。
|
||||
|
||||
* 支持文档场景信息抽取v3([PP-ChatOCRv3-doc](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/information_extration_pipelines/document_scene_information_extraction.md))、基于RT-DETR的[高精度版面区域检测模型](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/layout_detection.md)和PicoDet的[高效率版面区域检测模型](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/layout_detection.md)、高精度表格结构识别模型[SLANet_Plus](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/table_structure_recognition.md)、文本图像矫正模型[UVDoc](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/text_image_unwarping.md)、公式识别模型[LatexOCR](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/formula_recognition.md)、基于PP-LCNet的[文档图像方向分类模型](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/doc_img_orientation_classification.md)
|
||||
* 支持文档场景信息抽取v3[PP-ChatOCRv3-doc](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/information_extraction_pipelines/document_scene_information_extraction.md)、基于RT-DETR的[高精度版面区域检测模型](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/layout_detection.md)和PicoDet的[高效率版面区域检测模型](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/layout_detection.md)、高精度表格结构识别模型[SLANet_Plus](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/table_structure_recognition.md)、文本图像矫正模型[UVDoc](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/text_image_unwarping.md)、公式识别模型[LatexOCR](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/formula_recognition.md)、基于PP-LCNet的[文档图像方向分类模型](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/ocr_modules/doc_img_orientation_classification.md)
|
||||
|
||||
#### 🔥 2024.7 添加 PaddleOCR 算法模型挑战赛冠军方案:
|
||||
- 赛题一:OCR 端到端识别任务冠军方案——[场景文本识别算法-SVTRv2](https://paddlepaddle.github.io/PaddleOCR/latest/algorithm/text_recognition/algorithm_rec_svtrv2.html);
|
||||
|
|
Loading…
Reference in New Issue