support sybn for npu (#13983)
parent
ac43b3eb61
commit
0c89f158fd
|
@ -0,0 +1,112 @@
|
|||
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import paddle.distributed as dist
|
||||
import math
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
|
||||
|
||||
class _AllReduce(paddle.autograd.PyLayer):
|
||||
@staticmethod
|
||||
def forward(ctx, input):
|
||||
input_list = [paddle.zeros_like(input) for k in range(dist.get_world_size())]
|
||||
# Use allgather instead of allreduce since I don't trust in-place operations ..
|
||||
dist.all_gather(input_list, input, sync_op=True)
|
||||
inputs = paddle.stack(input_list, axis=0)
|
||||
return paddle.sum(inputs, axis=0)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
dist.all_reduce(grad_output, sync_op=True)
|
||||
return grad_output
|
||||
|
||||
|
||||
def differentiable_all_reduce(input):
|
||||
"""
|
||||
Differentiable counterpart of `dist.all_reduce`.
|
||||
"""
|
||||
if (
|
||||
not dist.is_available()
|
||||
or not dist.is_initialized()
|
||||
or dist.get_world_size() == 1
|
||||
):
|
||||
return input
|
||||
return _AllReduce.apply(input)
|
||||
|
||||
|
||||
class NaiveSyncBatchNorm(nn.BatchNorm2D):
|
||||
|
||||
def __init__(self, *args, stats_mode="", **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
assert stats_mode in ["", "N"]
|
||||
self._stats_mode = stats_mode
|
||||
|
||||
def forward(self, input):
|
||||
if dist.get_world_size() == 1 or not self.training:
|
||||
return super().forward(input)
|
||||
|
||||
B, C = input.shape[0], input.shape[1]
|
||||
|
||||
mean = paddle.mean(input, axis=[0, 2, 3])
|
||||
meansqr = paddle.mean(input * input, axis=[0, 2, 3])
|
||||
|
||||
if self._stats_mode == "":
|
||||
assert B > 0, 'SyncBatchNorm(stats_mode="") does not support zero batch size.'
|
||||
vec = paddle.concat([mean, meansqr], axis=0)
|
||||
vec = differentiable_all_reduce(vec) * (1.0 / dist.get_world_size())
|
||||
mean, meansqr = paddle.split(vec, [C, C])
|
||||
momentum = 1 - self._momentum # NOTE: paddle has reverse momentum defination
|
||||
else:
|
||||
if B == 0:
|
||||
vec = paddle.zeros([2 * C + 1], dtype=mean.dtype)
|
||||
vec = vec + input.sum() # make sure there is gradient w.r.t input
|
||||
else:
|
||||
vec = paddle.concat(
|
||||
[
|
||||
mean,
|
||||
meansqr,
|
||||
paddle.ones([1], dtype=mean.dtype),
|
||||
],
|
||||
axis=0,
|
||||
)
|
||||
vec = differentiable_all_reduce(vec * B)
|
||||
|
||||
total_batch = vec[-1].detach()
|
||||
momentum = total_batch.clip(max=1) * (1 - self._momentum) # no update if total_batch is 0
|
||||
mean, meansqr, _ = paddle.split(vec / total_batch.clip(min=1), [C, C, int(vec.shape[0] - 2*C)]) # avoid div-by-zero
|
||||
|
||||
var = meansqr - mean * mean
|
||||
invstd = paddle.rsqrt(var + self._epsilon)
|
||||
scale = self.weight * invstd
|
||||
bias = self.bias - mean * scale
|
||||
scale = scale.reshape([1, -1, 1, 1])
|
||||
bias = bias.reshape([1, -1, 1, 1])
|
||||
|
||||
tmp_mean = self._mean + momentum * (mean.detach() - self._mean)
|
||||
self._mean.set_value(tmp_mean)
|
||||
tmp_variance = self._variance + (momentum * (var.detach() - self._variance))
|
||||
self._variance.set_value(tmp_variance)
|
||||
ret = input * scale + bias
|
||||
return ret
|
||||
|
||||
|
||||
def convert_syncbn(model):
|
||||
for n, m in model.named_children():
|
||||
if isinstance(m, nn.layer.norm._BatchNormBase):
|
||||
syncbn = NaiveSyncBatchNorm(m._num_features, m._momentum, m._epsilon, m._weight_attr, m._bias_attr)
|
||||
setattr(model, n, syncbn)
|
||||
else:
|
||||
convert_syncbn(m)
|
||||
|
|
@ -37,6 +37,7 @@ from ppocr.utils.save_load import load_model
|
|||
from ppocr.utils.utility import set_seed
|
||||
from ppocr.modeling.architectures import apply_to_static
|
||||
import tools.program as program
|
||||
import tools.naive_sync_bn as naive_sync_bn
|
||||
|
||||
dist.get_world_size()
|
||||
|
||||
|
@ -138,7 +139,10 @@ def main(config, device, logger, vdl_writer):
|
|||
|
||||
use_sync_bn = config["Global"].get("use_sync_bn", False)
|
||||
if use_sync_bn:
|
||||
model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model)
|
||||
if config['Global'].get('use_npu', False):
|
||||
naive_sync_bn.convert_syncbn(model)
|
||||
else:
|
||||
model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model)
|
||||
logger.info("convert_sync_batchnorm")
|
||||
|
||||
model = apply_to_static(model, config, logger)
|
||||
|
|
Loading…
Reference in New Issue