add db++
parent
961dca72cf
commit
142b5e9dfe
|
@ -238,9 +238,12 @@ class DetResizeForTest(object):
|
|||
def __init__(self, **kwargs):
|
||||
super(DetResizeForTest, self).__init__()
|
||||
self.resize_type = 0
|
||||
self.keep_ratio = False
|
||||
if 'image_shape' in kwargs:
|
||||
self.image_shape = kwargs['image_shape']
|
||||
self.resize_type = 1
|
||||
if 'keep_ratio' in kwargs: ######
|
||||
self.keep_ratio = kwargs['keep_ratio'] #######
|
||||
elif 'limit_side_len' in kwargs:
|
||||
self.limit_side_len = kwargs['limit_side_len']
|
||||
self.limit_type = kwargs.get('limit_type', 'min')
|
||||
|
@ -270,6 +273,10 @@ class DetResizeForTest(object):
|
|||
def resize_image_type1(self, img):
|
||||
resize_h, resize_w = self.image_shape
|
||||
ori_h, ori_w = img.shape[:2] # (h, w, c)
|
||||
if self.keep_ratio: ########
|
||||
resize_w = ori_w * resize_h / ori_h
|
||||
N = math.ceil(resize_w / 32)
|
||||
resize_w = N * 32
|
||||
ratio_h = float(resize_h) / ori_h
|
||||
ratio_w = float(resize_w) / ori_w
|
||||
img = cv2.resize(img, (int(resize_w), int(resize_h)))
|
||||
|
|
|
@ -18,9 +18,10 @@ __all__ = ["build_backbone"]
|
|||
def build_backbone(config, model_type):
|
||||
if model_type == "det" or model_type == "table":
|
||||
from .det_mobilenet_v3 import MobileNetV3
|
||||
from .det_resnet_vd import ResNet
|
||||
from .det_resnet import ResNet
|
||||
from .det_resnet_vd import ResNet_vd
|
||||
from .det_resnet_vd_sast import ResNet_SAST
|
||||
support_dict = ["MobileNetV3", "ResNet", "ResNet_SAST"]
|
||||
support_dict = ["MobileNetV3", "ResNet", "ResNet_vd", "ResNet_SAST"]
|
||||
elif model_type == "rec" or model_type == "cls":
|
||||
from .rec_mobilenet_v3 import MobileNetV3
|
||||
from .rec_resnet_vd import ResNet
|
||||
|
|
|
@ -25,7 +25,7 @@ from paddle.vision.ops import DeformConv2D
|
|||
from paddle.regularizer import L2Decay
|
||||
from paddle.nn.initializer import Normal, Constant, XavierUniform
|
||||
|
||||
__all__ = ["ResNet"]
|
||||
__all__ = ["ResNet_vd", "ConvBNLayer", "DeformableConvV2"]
|
||||
|
||||
|
||||
class DeformableConvV2(nn.Layer):
|
||||
|
@ -104,6 +104,7 @@ class ConvBNLayer(nn.Layer):
|
|||
kernel_size,
|
||||
stride=1,
|
||||
groups=1,
|
||||
dcn_groups=1,
|
||||
is_vd_mode=False,
|
||||
act=None,
|
||||
is_dcn=False):
|
||||
|
@ -128,7 +129,7 @@ class ConvBNLayer(nn.Layer):
|
|||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=(kernel_size - 1) // 2,
|
||||
groups=2, #groups,
|
||||
groups=dcn_groups, #groups,
|
||||
bias_attr=False)
|
||||
self._batch_norm = nn.BatchNorm(out_channels, act=act)
|
||||
|
||||
|
@ -162,7 +163,8 @@ class BottleneckBlock(nn.Layer):
|
|||
kernel_size=3,
|
||||
stride=stride,
|
||||
act='relu',
|
||||
is_dcn=is_dcn)
|
||||
is_dcn=is_dcn,
|
||||
dcn_groups=2)
|
||||
self.conv2 = ConvBNLayer(
|
||||
in_channels=out_channels,
|
||||
out_channels=out_channels * 4,
|
||||
|
@ -238,14 +240,14 @@ class BasicBlock(nn.Layer):
|
|||
return y
|
||||
|
||||
|
||||
class ResNet(nn.Layer):
|
||||
class ResNet_vd(nn.Layer):
|
||||
def __init__(self,
|
||||
in_channels=3,
|
||||
layers=50,
|
||||
dcn_stage=None,
|
||||
out_indices=None,
|
||||
**kwargs):
|
||||
super(ResNet, self).__init__()
|
||||
super(ResNet_vd, self).__init__()
|
||||
|
||||
self.layers = layers
|
||||
supported_layers = [18, 34, 50, 101, 152, 200]
|
||||
|
|
|
@ -105,9 +105,10 @@ class DSConv(nn.Layer):
|
|||
|
||||
|
||||
class DBFPN(nn.Layer):
|
||||
def __init__(self, in_channels, out_channels, **kwargs):
|
||||
def __init__(self, in_channels, out_channels, use_asf=None, **kwargs):
|
||||
super(DBFPN, self).__init__()
|
||||
self.out_channels = out_channels
|
||||
self.use_asf = use_asf
|
||||
weight_attr = paddle.nn.initializer.KaimingUniform()
|
||||
|
||||
self.in2_conv = nn.Conv2D(
|
||||
|
@ -163,6 +164,9 @@ class DBFPN(nn.Layer):
|
|||
weight_attr=ParamAttr(initializer=weight_attr),
|
||||
bias_attr=False)
|
||||
|
||||
if self.use_asf:
|
||||
self.asf = ASFBlock(self.out_channels, self.out_channels // 4)
|
||||
|
||||
def forward(self, x):
|
||||
c2, c3, c4, c5 = x
|
||||
|
||||
|
@ -187,6 +191,10 @@ class DBFPN(nn.Layer):
|
|||
p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)
|
||||
|
||||
fuse = paddle.concat([p5, p4, p3, p2], axis=1)
|
||||
|
||||
if self.use_asf:
|
||||
fuse = self.asf(fuse, [p5, p4, p3, p2])
|
||||
|
||||
return fuse
|
||||
|
||||
|
||||
|
@ -356,3 +364,53 @@ class LKPAN(nn.Layer):
|
|||
|
||||
fuse = paddle.concat([p5, p4, p3, p2], axis=1)
|
||||
return fuse
|
||||
|
||||
|
||||
class ASFBlock(nn.Layer):
|
||||
def __init__(self, in_channels, inter_channels, out_features_num=4):
|
||||
super(ASFBlock, self).__init__()
|
||||
weight_attr = paddle.nn.initializer.KaimingUniform()
|
||||
self.in_channels = in_channels
|
||||
self.inter_channels = inter_channels
|
||||
self.out_features_num = out_features_num
|
||||
self.conv = nn.Conv2D(in_channels, inter_channels, 3, padding=1)
|
||||
|
||||
self.attention_block_1 = nn.Sequential(
|
||||
#Nx1xHxW
|
||||
nn.Conv2D(
|
||||
1,
|
||||
1,
|
||||
3,
|
||||
bias_attr=False,
|
||||
padding=1,
|
||||
weight_attr=ParamAttr(initializer=weight_attr)),
|
||||
nn.ReLU(),
|
||||
nn.Conv2D(
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
bias_attr=False,
|
||||
weight_attr=ParamAttr(initializer=weight_attr)),
|
||||
nn.Sigmoid())
|
||||
|
||||
self.attention_block_2 = nn.Sequential(
|
||||
nn.Conv2D(
|
||||
inter_channels,
|
||||
out_features_num,
|
||||
1,
|
||||
bias_attr=False,
|
||||
weight_attr=ParamAttr(initializer=weight_attr)),
|
||||
nn.Sigmoid())
|
||||
|
||||
def forward(self, fuse_features, features_list):
|
||||
fuse_features = self.conv(fuse_features)
|
||||
attention_scores = self.attention_block_1(
|
||||
paddle.mean(
|
||||
fuse_features, axis=1, keepdim=True)) + fuse_features
|
||||
attention_scores = self.attention_block_2(attention_scores)
|
||||
assert len(features_list) == self.out_features_num
|
||||
|
||||
out_list = []
|
||||
for i in range(self.out_features_num):
|
||||
out_list.append(attention_scores[:, i:i + 1] * features_list[i])
|
||||
return paddle.concat(out_list, axis=1)
|
||||
|
|
|
@ -308,3 +308,38 @@ class Const(object):
|
|||
end_lr=self.learning_rate,
|
||||
last_epoch=self.last_epoch)
|
||||
return learning_rate
|
||||
|
||||
|
||||
class DecayLearningRate(object):
|
||||
"""
|
||||
DecayLearningRate learning rate decay
|
||||
new_lr = (lr - end_lr) * (1 - epoch/decay_steps)**power + end_lr
|
||||
Args:
|
||||
learning_rate(float): initial learning rate
|
||||
step_each_epoch(int): steps each epoch
|
||||
epochs(int): total training epochs
|
||||
factor(float): Power of polynomial, should greater than 0.0 to get learning rate decay. Default: 0.9
|
||||
end_lr(float): The minimum final learning rate. Default: 0.0.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
learning_rate,
|
||||
step_each_epoch,
|
||||
epochs,
|
||||
factor=0.9,
|
||||
end_lr=0,
|
||||
**kwargs):
|
||||
super(DecayLearningRate, self).__init__()
|
||||
self.learning_rate = learning_rate
|
||||
self.epochs = epochs + 1
|
||||
self.factor = factor
|
||||
self.end_lr = 0
|
||||
self.decay_steps = step_each_epoch * epochs
|
||||
|
||||
def __call__(self):
|
||||
learning_rate = lr.PolynomialDecay(
|
||||
learning_rate=self.learning_rate,
|
||||
decay_steps=self.decay_steps,
|
||||
power=self.factor,
|
||||
end_lr=self.end_lr)
|
||||
return learning_rate
|
||||
|
|
Loading…
Reference in New Issue