fixed conflict vl 0811

pull/6842/head
smilelite 2022-08-11 21:23:34 +08:00
commit 17b1312e7c
176 changed files with 3169 additions and 1329 deletions

View File

@ -131,7 +131,7 @@ pip3 install dist/PPOCRLabel-1.0.2-py2.py3-none-any.whl -i https://mirror.baidu.
> 注意:如果表格中存在空白单元格,同样需要使用一个标注框将其标出,使得单元格总数与图像中保持一致。
3. **调整单元格顺序**点击软件`视图-显示框编号` 打开标注框序号,在软件界面右侧拖动 `识别结果` 一栏下的所有结果,使得标注框编号按照从左到右,从上到下的顺序排列
3. **调整单元格顺序**点击软件`视图-显示框编号` 打开标注框序号,在软件界面右侧拖动 `识别结果` 一栏下的所有结果,使得标注框编号按照从左到右,从上到下的顺序排列,按行依次标注。
4. 标注表格结构:**在外部Excel软件中将存在文字的单元格标记为任意标识符`1` **保证Excel中的单元格合并情况与原图相同即可即不需要Excel中的单元格文字与图片中的文字完全相同

View File

@ -1,41 +1,78 @@
[English](README_en.md) | 简体中文
# 场景应用
PaddleOCR场景应用覆盖通用制造、金融、交通行业的主要OCR垂类应用在PP-OCR、PP-Structure的通用能力基础之上以notebook的形式展示利用场景数据微调、模型优化方法、数据增广等内容为开发者快速落地OCR应用提供示范与启发。
> 如需下载全部垂类模型可以扫描下方二维码关注公众号填写问卷后加入PaddleOCR官方交流群获取20G OCR学习大礼包内含《动手学OCR》电子书、课程回放视频、前沿论文等重磅资料
- [教程文档](#1)
- [通用](#11)
- [制造](#12)
- [金融](#13)
- [交通](#14)
- [模型下载](#2)
<a name="1"></a>
## 教程文档
<a name="11"></a>
### 通用
| 类别 | 亮点 | 模型下载 | 教程 |
| ---------------------- | ------------ | -------------- | --------------------------------------- |
| 高精度中文识别模型SVTR | 比PP-OCRv3识别模型精度高3%,可用于数据挖掘或对预测效率要求不高的场景。| [模型下载](#2) | [中文](./高精度中文识别模型.md)/English |
| 手写体识别 | 新增字形支持 | | |
<a name="12"></a>
### 制造
| 类别 | 亮点 | 模型下载 | 教程 | 示例图 |
| -------------- | ------------------------------ | -------------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
| 数码管识别 | 数码管数据合成、漏识别调优 | [模型下载](#2) | [中文](./光功率计数码管字符识别/光功率计数码管字符识别.md)/English | <img src="https://ai-studio-static-online.cdn.bcebos.com/7d5774a273f84efba5b9ce7fd3f86e9ef24b6473e046444db69fa3ca20ac0986" width = "200" height = "100" /> |
| 液晶屏读数识别 | 检测模型蒸馏、Serving部署 | [模型下载](#2) | [中文](./液晶屏读数识别.md)/English | <img src="https://ai-studio-static-online.cdn.bcebos.com/901ab741cb46441ebec510b37e63b9d8d1b7c95f63cc4e5e8757f35179ae6373" width = "200" height = "100" /> |
| 包装生产日期 | 点阵字符合成、过曝过暗文字识别 | [模型下载](#2) | [中文](./包装生产日期识别.md)/English | <img src="https://ai-studio-static-online.cdn.bcebos.com/d9e0533cc1df47ffa3bbe99de9e42639a3ebfa5bce834bafb1ca4574bf9db684" width = "200" height = "100" /> |
| PCB文字识别 | 小尺寸文本检测与识别 | [模型下载](#2) | [中文](./PCB字符识别/PCB字符识别.md)/English | <img src="https://ai-studio-static-online.cdn.bcebos.com/95d8e95bf1ab476987f2519c0f8f0c60a0cdc2c444804ed6ab08f2f7ab054880" width = "200" height = "100" /> |
| 电表识别 | 大分辨率图像检测调优 | [模型下载](#2) | | |
| 液晶屏缺陷检测 | 非文字字符识别 | | | |
<a name="13"></a>
### 金融
| 类别 | 亮点 | 模型下载 | 教程 | 示例图 |
| -------------- | ------------------------ | -------------- | ----------------------------------- | ------------------------------------------------------------ |
| 表单VQA | 多模态通用表单结构化提取 | [模型下载](#2) | [中文](./多模态表单识别.md)/English | <img src="https://ai-studio-static-online.cdn.bcebos.com/a3b25766f3074d2facdf88d4a60fc76612f51992fd124cf5bd846b213130665b" width = "200" height = "200" /> |
| 增值税发票 | 尽请期待 | | | |
| 印章检测与识别 | 端到端弯曲文本识别 | | | |
| 通用卡证识别 | 通用结构化提取 | | | |
| 身份证识别 | 结构化提取、图像阴影 | | | |
| 合同比对 | 密集文本检测、NLP串联 | | | |
<a name="14"></a>
### 交通
| 类别 | 亮点 | 模型下载 | 教程 | 示例图 |
| ----------------- | ------------------------------ | -------------- | ----------------------------------- | ------------------------------------------------------------ |
| 车牌识别 | 多角度图像、轻量模型、端侧部署 | [模型下载](#2) | [中文](./轻量级车牌识别.md)/English | <img src="https://ai-studio-static-online.cdn.bcebos.com/76b6a0939c2c4cf49039b6563c4b28e241e11285d7464e799e81c58c0f7707a7" width = "200" height = "100" /> |
| 驾驶证/行驶证识别 | 尽请期待 | | | |
| 快递单识别 | 尽请期待 | | | |
<a name="2"></a>
## 模型下载
如需下载上述场景中已经训练好的垂类模型可以扫描下方二维码关注公众号填写问卷后加入PaddleOCR官方交流群获取20G OCR学习大礼包内含《动手学OCR》电子书、课程回放视频、前沿论文等重磅资料
<div align="center">
<img src="https://ai-studio-static-online.cdn.bcebos.com/dd721099bd50478f9d5fb13d8dd00fad69c22d6848244fd3a1d3980d7fefc63e" width = "150" height = "150" />
</div>
如果您是企业开发者且未在上述场景中找到合适的方案,可以填写[OCR应用合作调研问卷](https://paddle.wjx.cn/vj/QwF7GKw.aspx)免费与官方团队展开不同层次的合作包括但不限于问题抽象、确定技术方案、项目答疑、共同研发等。如果您已经使用PaddleOCR落地项目也可以填写此问卷与飞桨平台共同宣传推广提升企业技术品宣。期待您的提交
> 如果您是企业开发者且未在下述场景中找到合适的方案,可以填写[OCR应用合作调研问卷](https://paddle.wjx.cn/vj/QwF7GKw.aspx)免费与官方团队展开不同层次的合作包括但不限于问题抽象、确定技术方案、项目答疑、共同研发等。如果您已经使用PaddleOCR落地项目也可以填写此问卷与飞桨平台共同宣传推广提升企业技术品宣。期待您的提交
## 通用
| 类别 | 亮点 | 类别 | 亮点 |
| ------------------------------------------------- | -------- | ---------- | ------------ |
| [高精度中文识别模型SVTR](./高精度中文识别模型.md) | 新增模型 | 手写体识别 | 新增字形支持 |
## 制造
| 类别 | 亮点 | 类别 | 亮点 |
| ------------------------------------------------------------ | ------------------------------ | ------------------------------------------- | -------------------- |
| [数码管识别](./光功率计数码管字符识别/光功率计数码管字符识别.md) | 数码管数据合成、漏识别调优 | 电表识别 | 大分辨率图像检测调优 |
| [液晶屏读数识别](./液晶屏读数识别.md) | 检测模型蒸馏、Serving部署 | [PCB文字识别](./PCB字符识别/PCB字符识别.md) | 小尺寸文本检测与识别 |
| [包装生产日期](./包装生产日期识别.md) | 点阵字符合成、过曝过暗文字识别 | 液晶屏缺陷检测 | 非文字字符识别 |
## 金融
| 类别 | 亮点 | 类别 | 亮点 |
| ------------------------------ | ------------------------ | ------------ | --------------------- |
| [表单VQA](./多模态表单识别.md) | 多模态通用表单结构化提取 | 通用卡证识别 | 通用结构化提取 |
| 增值税发票 | 尽请期待 | 身份证识别 | 结构化提取、图像阴影 |
| 印章检测与识别 | 端到端弯曲文本识别 | 合同比对 | 密集文本检测、NLP串联 |
## 交通
| 类别 | 亮点 | 类别 | 亮点 |
| ------------------------------- | ------------------------------ | ---------- | -------- |
| [车牌识别](./轻量级车牌识别.md) | 多角度图像、轻量模型、端侧部署 | 快递单识别 | 尽请期待 |
| 驾驶证/行驶证识别 | 尽请期待 | | |
<a href="https://trackgit.com">
<img src="https://us-central1-trackgit-analytics.cloudfunctions.net/token/ping/l63cvzo0w09yxypc7ygl" alt="traffic" />
</a>

View File

@ -0,0 +1,251 @@
# 基于PP-OCRv3的手写文字识别
- [1. 项目背景及意义](#1-项目背景及意义)
- [2. 项目内容](#2-项目内容)
- [3. PP-OCRv3识别算法介绍](#3-PP-OCRv3识别算法介绍)
- [4. 安装环境](#4-安装环境)
- [5. 数据准备](#5-数据准备)
- [6. 模型训练](#6-模型训练)
- [6.1 下载预训练模型](#61-下载预训练模型)
- [6.2 修改配置文件](#62-修改配置文件)
- [6.3 开始训练](#63-开始训练)
- [7. 模型评估](#7-模型评估)
- [8. 模型导出推理](#8-模型导出推理)
- [8.1 模型导出](#81-模型导出)
- [8.2 模型推理](#82-模型推理)
## 1. 项目背景及意义
目前光学字符识别(OCR)技术在我们的生活当中被广泛使用但是大多数模型在通用场景下的准确性还有待提高。针对于此我们借助飞桨提供的PaddleOCR套件较容易的实现了在垂类场景下的应用。手写体在日常生活中较为常见然而手写体的识别却存在着很大的挑战因为每个人的手写字体风格不一样这对于视觉模型来说还是相当有挑战的。因此训练一个手写体识别模型具有很好的现实意义。下面给出一些手写体的示例图
![example](https://ai-studio-static-online.cdn.bcebos.com/7a8865b2836f42d382e7c3fdaedc4d307d797fa2bcd0466e9f8b7705efff5a7b)
## 2. 项目内容
本项目基于PaddleOCR套件以PP-OCRv3识别模型为基础针对手写文字识别场景进行优化。
Aistudio项目链接[OCR手写文字识别](https://aistudio.baidu.com/aistudio/projectdetail/4330587)
## 3. PP-OCRv3识别算法介绍
PP-OCRv3的识别模块是基于文本识别算法[SVTR](https://arxiv.org/abs/2205.00159)优化。SVTR不再采用RNN结构通过引入Transformers结构更加有效地挖掘文本行图像的上下文信息从而提升文本识别能力。如下图所示PP-OCRv3采用了6个优化策略。
![v3_rec](https://ai-studio-static-online.cdn.bcebos.com/d4f5344b5b854d50be738671598a89a45689c6704c4d481fb904dd7cf72f2a1a)
优化策略汇总如下:
* SVTR_LCNet轻量级文本识别网络
* GTCAttention指导CTC训练策略
* TextConAug挖掘文字上下文信息的数据增广策略
* TextRotNet自监督的预训练模型
* UDML联合互学习策略
* UIM无标注数据挖掘方案
详细优化策略描述请参考[PP-OCRv3优化策略](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.5/doc/doc_ch/PP-OCRv3_introduction.md#3-%E8%AF%86%E5%88%AB%E4%BC%98%E5%8C%96)
## 4. 安装环境
```python
# 首先git官方的PaddleOCR项目安装需要的依赖
git clone https://github.com/PaddlePaddle/PaddleOCR.git
cd PaddleOCR
pip install -r requirements.txt
```
## 5. 数据准备
本项目使用公开的手写文本识别数据集包含Chinese OCR, 中科院自动化研究所-手写中文数据集[CASIA-HWDB2.x](http://www.nlpr.ia.ac.cn/databases/handwriting/Download.html),以及由中科院手写数据和网上开源数据合并组合的[数据集](https://aistudio.baidu.com/aistudio/datasetdetail/102884/0)等,该项目已经挂载处理好的数据集,可直接下载使用进行训练。
```python
下载并解压数据
tar -xf hw_data.tar
```
## 6. 模型训练
### 6.1 下载预训练模型
首先需要下载我们需要的PP-OCRv3识别预训练模型更多选择请自行选择其他的[文字识别模型](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.5/doc/doc_ch/models_list.md#2-%E6%96%87%E6%9C%AC%E8%AF%86%E5%88%AB%E6%A8%A1%E5%9E%8B)
```python
# 使用该指令下载需要的预训练模型
wget -P ./pretrained_models/ https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_train.tar
# 解压预训练模型文件
tar -xf ./pretrained_models/ch_PP-OCRv3_rec_train.tar -C pretrained_models
```
### 6.2 修改配置文件
我们使用`configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml`,主要修改训练轮数和学习率参相关参数,设置预训练模型路径,设置数据集路径。 另外batch_size可根据自己机器显存大小进行调整。 具体修改如下几个地方:
```
epoch_num: 100 # 训练epoch数
save_model_dir: ./output/ch_PP-OCR_v3_rec
save_epoch_step: 10
eval_batch_step: [0, 100] # 评估间隔每隔100step评估一次
pretrained_model: ./pretrained_models/ch_PP-OCRv3_rec_train/best_accuracy # 预训练模型路径
lr:
name: Cosine # 修改学习率衰减策略为Cosine
learning_rate: 0.0001 # 修改fine-tune的学习率
warmup_epoch: 2 # 修改warmup轮数
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data # 训练集图片路径
ext_op_transform_idx: 1
label_file_list:
- ./train_data/chineseocr-data/rec_hand_line_all_label_train.txt # 训练集标签
- ./train_data/handwrite/HWDB2.0Train_label.txt
- ./train_data/handwrite/HWDB2.1Train_label.txt
- ./train_data/handwrite/HWDB2.2Train_label.txt
- ./train_data/handwrite/hwdb_ic13/handwriting_hwdb_train_labels.txt
- ./train_data/handwrite/HW_Chinese/train_hw.txt
ratio_list:
- 0.1
- 1.0
- 1.0
- 1.0
- 0.02
- 1.0
loader:
shuffle: true
batch_size_per_card: 64
drop_last: true
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data # 测试集图片路径
label_file_list:
- ./train_data/chineseocr-data/rec_hand_line_all_label_val.txt # 测试集标签
- ./train_data/handwrite/HWDB2.0Test_label.txt
- ./train_data/handwrite/HWDB2.1Test_label.txt
- ./train_data/handwrite/HWDB2.2Test_label.txt
- ./train_data/handwrite/hwdb_ic13/handwriting_hwdb_val_labels.txt
- ./train_data/handwrite/HW_Chinese/test_hw.txt
loader:
shuffle: false
drop_last: false
batch_size_per_card: 64
num_workers: 4
```
由于数据集大多是长文本,因此需要**注释**掉下面的数据增广策略,以便训练出更好的模型。
```
- RecConAug:
prob: 0.5
ext_data_num: 2
image_shape: [48, 320, 3]
```
### 6.3 开始训练
我们使用上面修改好的配置文件`configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml`,预训练模型,数据集路径,学习率,训练轮数等都已经设置完毕后,可以使用下面命令开始训练。
```python
# 开始训练识别模型
python tools/train.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml
```
## 7. 模型评估
在训练之前,我们可以直接使用下面命令来评估预训练模型的效果:
```python
# 评估预训练模型
python tools/eval.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml -o Global.pretrained_model="./pretrained_models/ch_PP-OCRv3_rec_train/best_accuracy"
```
```
[2022/07/14 10:46:22] ppocr INFO: load pretrain successful from ./pretrained_models/ch_PP-OCRv3_rec_train/best_accuracy
eval model:: 100%|████████████████████████████| 687/687 [03:29<00:00, 3.27it/s]
[2022/07/14 10:49:52] ppocr INFO: metric eval ***************
[2022/07/14 10:49:52] ppocr INFO: acc:0.03724954461811258
[2022/07/14 10:49:52] ppocr INFO: norm_edit_dis:0.4859541065843199
[2022/07/14 10:49:52] ppocr INFO: Teacher_acc:0.0371584699368947
[2022/07/14 10:49:52] ppocr INFO: Teacher_norm_edit_dis:0.48718814890536477
[2022/07/14 10:49:52] ppocr INFO: fps:947.8562684823883
```
可以看出直接加载预训练模型进行评估效果较差因为预训练模型并不是基于手写文字进行单独训练的所以我们需要基于预训练模型进行finetune。
训练完成后,可以进行测试评估,评估命令如下:
```python
# 评估finetune效果
python tools/eval.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml -o Global.pretrained_model="./output/ch_PP-OCR_v3_rec/best_accuracy"
```
评估结果如下可以看出识别准确率为54.3%。
```
[2022/07/14 10:54:06] ppocr INFO: metric eval ***************
[2022/07/14 10:54:06] ppocr INFO: acc:0.5430100180913
[2022/07/14 10:54:06] ppocr INFO: norm_edit_dis:0.9203322593158589
[2022/07/14 10:54:06] ppocr INFO: Teacher_acc:0.5401183969626324
[2022/07/14 10:54:06] ppocr INFO: Teacher_norm_edit_dis:0.919827504507755
[2022/07/14 10:54:06] ppocr INFO: fps:928.948733797251
```
如需获取已训练模型请扫码填写问卷加入PaddleOCR官方交流群获取全部OCR垂类模型下载链接、《动手学OCR》电子书等全套OCR学习资料🎁
<div align="left">
<img src="https://ai-studio-static-online.cdn.bcebos.com/dd721099bd50478f9d5fb13d8dd00fad69c22d6848244fd3a1d3980d7fefc63e" width = "150" height = "150" />
</div>
将下载或训练完成的模型放置在对应目录下即可完成模型推理。
## 8. 模型导出推理
训练完成后可以将训练模型转换成inference模型。inference 模型会额外保存模型的结构信息,在预测部署、加速推理上性能优越,灵活方便,适合于实际系统集成。
### 8.1 模型导出
导出命令如下:
```python
# 转化为推理模型
python tools/export_model.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml -o Global.pretrained_model="./output/ch_PP-OCR_v3_rec/best_accuracy" Global.save_inference_dir="./inference/rec_ppocrv3/"
```
### 8.2 模型推理
导出模型后,可以使用如下命令进行推理预测:
```python
# 推理预测
python tools/infer/predict_rec.py --image_dir="train_data/handwrite/HWDB2.0Test_images/104-P16_4.jpg" --rec_model_dir="./inference/rec_ppocrv3/Student"
```
```
[2022/07/14 10:55:56] ppocr INFO: In PP-OCRv3, rec_image_shape parameter defaults to '3, 48, 320', if you are using recognition model with PP-OCRv2 or an older version, please set --rec_image_shape='3,32,320
[2022/07/14 10:55:58] ppocr INFO: Predicts of train_data/handwrite/HWDB2.0Test_images/104-P16_4.jpg:('品结构,差异化的多品牌渗透使欧莱雅确立了其在中国化妆', 0.9904912114143372)
```
```python
# 可视化文字识别图片
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import os
img_path = 'train_data/handwrite/HWDB2.0Test_images/104-P16_4.jpg'
def vis(img_path):
plt.figure()
image = Image.open(img_path)
plt.imshow(image)
plt.show()
# image = image.resize([208, 208])
vis(img_path)
```
![res](https://ai-studio-static-online.cdn.bcebos.com/ad7c02745491498d82e0ce95f4a274f9b3920b2f467646858709359b7af9d869)

View File

@ -2,7 +2,7 @@
## 1. 简介
PP-OCRv3是百度开源的超轻量级场景文本检测识别模型库其中超轻量的场景中文识别模型SVTR_LCNet使用了SVTR算法结构。为了保证速度SVTR_LCNet将SVTR模型的Local Blocks替换为LCNet使用两层Global Blocks。在中文场景中PP-OCRv3识别主要使用如下优化策略
PP-OCRv3是百度开源的超轻量级场景文本检测识别模型库其中超轻量的场景中文识别模型SVTR_LCNet使用了SVTR算法结构。为了保证速度SVTR_LCNet将SVTR模型的Local Blocks替换为LCNet使用两层Global Blocks。在中文场景中PP-OCRv3识别主要使用如下优化策略[详细技术报告](../doc/doc_ch/PP-OCRv3_introduction.md)
- GTCAttention指导CTC训练策略
- TextConAug挖掘文字上下文信息的数据增广策略
- TextRotNet自监督的预训练模型

View File

@ -6,11 +6,11 @@ Global:
save_model_dir: ./output/re_layoutlmv2_xfund_zh
save_epoch_step: 2000
# evaluation is run every 10 iterations after the 0th iteration
eval_batch_step: [ 0, 57 ]
eval_batch_step: [ 0, 19 ]
cal_metric_during_train: False
save_inference_dir:
use_visualdl: False
seed: 2048
seed: 2022
infer_img: ppstructure/docs/vqa/input/zh_val_21.jpg
save_res_path: ./output/re_layoutlmv2_xfund_zh/res/

View File

@ -1,9 +1,9 @@
Global:
use_gpu: True
epoch_num: &epoch_num 200
epoch_num: &epoch_num 130
log_smooth_window: 10
print_batch_step: 10
save_model_dir: ./output/re_layoutxlm/
save_model_dir: ./output/re_layoutxlm_xfund_zh
save_epoch_step: 2000
# evaluation is run every 10 iterations after the 0th iteration
eval_batch_step: [ 0, 19 ]
@ -12,7 +12,7 @@ Global:
use_visualdl: False
seed: 2022
infer_img: ppstructure/docs/vqa/input/zh_val_21.jpg
save_res_path: ./output/re/
save_res_path: ./output/re_layoutxlm_xfund_zh/res/
Architecture:
model_type: vqa
@ -81,7 +81,7 @@ Train:
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
batch_size_per_card: 2
num_workers: 8
collate_fn: ListCollator

View File

@ -6,13 +6,13 @@ Global:
save_model_dir: ./output/ser_layoutlm_xfund_zh
save_epoch_step: 2000
# evaluation is run every 10 iterations after the 0th iteration
eval_batch_step: [ 0, 57 ]
eval_batch_step: [ 0, 19 ]
cal_metric_during_train: False
save_inference_dir:
use_visualdl: False
seed: 2022
infer_img: ppstructure/docs/vqa/input/zh_val_42.jpg
save_res_path: ./output/ser_layoutlm_xfund_zh/res/
save_res_path: ./output/re_layoutlm_xfund_zh/res
Architecture:
model_type: vqa
@ -55,6 +55,7 @@ Train:
data_dir: train_data/XFUND/zh_train/image
label_file_list:
- train_data/XFUND/zh_train/train.json
ratio_list: [ 1.0 ]
transforms:
- DecodeImage: # load image
img_mode: RGB

View File

@ -27,6 +27,7 @@ Architecture:
Loss:
name: VQASerTokenLayoutLMLoss
num_classes: *num_classes
key: "backbone_out"
Optimizer:
name: AdamW

View File

@ -27,6 +27,7 @@ Architecture:
Loss:
name: VQASerTokenLayoutLMLoss
num_classes: *num_classes
key: "backbone_out"
Optimizer:
name: AdamW

View File

@ -1,18 +1,18 @@
Global:
use_gpu: True
epoch_num: &epoch_num 200
epoch_num: &epoch_num 130
log_smooth_window: 10
print_batch_step: 10
save_model_dir: ./output/re_layoutxlm_funsd
save_model_dir: ./output/re_vi_layoutxlm_xfund_zh
save_epoch_step: 2000
# evaluation is run every 10 iterations after the 0th iteration
eval_batch_step: [ 0, 57 ]
eval_batch_step: [ 0, 19 ]
cal_metric_during_train: False
save_inference_dir:
use_visualdl: False
seed: 2022
infer_img: train_data/FUNSD/testing_data/images/83624198.png
save_res_path: ./output/re_layoutxlm_funsd/res/
infer_img: ppstructure/docs/vqa/input/zh_val_21.jpg
save_res_path: ./output/re/xfund_zh/with_gt
Architecture:
model_type: vqa
@ -21,6 +21,7 @@ Architecture:
Backbone:
name: LayoutXLMForRe
pretrained: True
mode: vi
checkpoints:
Loss:
@ -50,10 +51,9 @@ Metric:
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/FUNSD/training_data/images/
data_dir: train_data/XFUND/zh_train/image
label_file_list:
- ./train_data/FUNSD/train_v4.json
# - ./train_data/FUNSD/train.json
- train_data/XFUND/zh_train/train.json
ratio_list: [ 1.0 ]
transforms:
- DecodeImage: # load image
@ -62,8 +62,9 @@ Train:
- VQATokenLabelEncode: # Class handling label
contains_re: True
algorithm: *algorithm
class_path: &class_path ./train_data/FUNSD/class_list.txt
class_path: &class_path train_data/XFUND/class_list_xfun.txt
use_textline_bbox_info: &use_textline_bbox_info True
order_method: &order_method "tb-yx"
- VQATokenPad:
max_seq_len: &max_seq_len 512
return_attention_mask: True
@ -79,22 +80,20 @@ Train:
order: 'hwc'
- ToCHWImage:
- KeepKeys:
# dataloader will return list in this order
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'entities', 'relations']
keep_keys: [ 'input_ids', 'bbox','attention_mask', 'token_type_ids', 'image', 'entities', 'relations'] # dataloader will return list in this order
loader:
shuffle: False
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 16
batch_size_per_card: 2
num_workers: 4
collate_fn: ListCollator
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/FUNSD/testing_data/images/
label_file_list:
- ./train_data/FUNSD/test_v4.json
# - ./train_data/FUNSD/test.json
data_dir: train_data/XFUND/zh_val/image
label_file_list:
- train_data/XFUND/zh_val/val.json
transforms:
- DecodeImage: # load image
img_mode: RGB
@ -104,6 +103,7 @@ Eval:
algorithm: *algorithm
class_path: *class_path
use_textline_bbox_info: *use_textline_bbox_info
order_method: *order_method
- VQATokenPad:
max_seq_len: *max_seq_len
return_attention_mask: True
@ -119,11 +119,11 @@ Eval:
order: 'hwc'
- ToCHWImage:
- KeepKeys:
# dataloader will return list in this order
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'entities', 'relations']
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'entities', 'relations'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size_per_card: 8
num_workers: 8
collate_fn: ListCollator

View File

@ -0,0 +1,175 @@
Global:
use_gpu: True
epoch_num: &epoch_num 130
log_smooth_window: 10
print_batch_step: 10
save_model_dir: ./output/re_vi_layoutxlm_xfund_zh_udml
save_epoch_step: 2000
# evaluation is run every 10 iterations after the 0th iteration
eval_batch_step: [ 0, 19 ]
cal_metric_during_train: False
save_inference_dir:
use_visualdl: False
seed: 2022
infer_img: ppstructure/docs/vqa/input/zh_val_21.jpg
save_res_path: ./output/re/xfund_zh/with_gt
Architecture:
model_type: &model_type "vqa"
name: DistillationModel
algorithm: Distillation
Models:
Teacher:
pretrained:
freeze_params: false
return_all_feats: true
model_type: *model_type
algorithm: &algorithm "LayoutXLM"
Transform:
Backbone:
name: LayoutXLMForRe
pretrained: True
mode: vi
checkpoints:
Student:
pretrained:
freeze_params: false
return_all_feats: true
model_type: *model_type
algorithm: *algorithm
Transform:
Backbone:
name: LayoutXLMForRe
pretrained: True
mode: vi
checkpoints:
Loss:
name: CombinedLoss
loss_config_list:
- DistillationLossFromOutput:
weight: 1.0
model_name_list: ["Student", "Teacher"]
key: loss
reduction: mean
- DistillationVQADistanceLoss:
weight: 0.5
mode: "l2"
model_name_pairs:
- ["Student", "Teacher"]
key: hidden_states_5
name: "loss_5"
- DistillationVQADistanceLoss:
weight: 0.5
mode: "l2"
model_name_pairs:
- ["Student", "Teacher"]
key: hidden_states_8
name: "loss_8"
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
clip_norm: 10
lr:
learning_rate: 0.00005
warmup_epoch: 10
regularizer:
name: L2
factor: 0.00000
PostProcess:
name: DistillationRePostProcess
model_name: ["Student", "Teacher"]
key: null
Metric:
name: DistillationMetric
base_metric_name: VQAReTokenMetric
main_indicator: hmean
key: "Student"
Train:
dataset:
name: SimpleDataSet
data_dir: train_data/XFUND/zh_train/image
label_file_list:
- train_data/XFUND/zh_train/train.json
ratio_list: [ 1.0 ]
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VQATokenLabelEncode: # Class handling label
contains_re: True
algorithm: *algorithm
class_path: &class_path train_data/XFUND/class_list_xfun.txt
use_textline_bbox_info: &use_textline_bbox_info True
# [None, "tb-yx"]
order_method: &order_method "tb-yx"
- VQATokenPad:
max_seq_len: &max_seq_len 512
return_attention_mask: True
- VQAReTokenRelation:
- VQAReTokenChunk:
max_seq_len: *max_seq_len
- Resize:
size: [224,224]
- NormalizeImage:
scale: 1
mean: [ 123.675, 116.28, 103.53 ]
std: [ 58.395, 57.12, 57.375 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'input_ids', 'bbox','attention_mask', 'token_type_ids', 'image', 'entities', 'relations'] # dataloader will return list in this order
loader:
shuffle: True
drop_last: False
batch_size_per_card: 2
num_workers: 4
collate_fn: ListCollator
Eval:
dataset:
name: SimpleDataSet
data_dir: train_data/XFUND/zh_val/image
label_file_list:
- train_data/XFUND/zh_val/val.json
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VQATokenLabelEncode: # Class handling label
contains_re: True
algorithm: *algorithm
class_path: *class_path
use_textline_bbox_info: *use_textline_bbox_info
order_method: *order_method
- VQATokenPad:
max_seq_len: *max_seq_len
return_attention_mask: True
- VQAReTokenRelation:
- VQAReTokenChunk:
max_seq_len: *max_seq_len
- Resize:
size: [224,224]
- NormalizeImage:
scale: 1
mean: [ 123.675, 116.28, 103.53 ]
std: [ 58.395, 57.12, 57.375 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'entities', 'relations'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size_per_card: 8
num_workers: 8
collate_fn: ListCollator

View File

@ -3,30 +3,38 @@ Global:
epoch_num: &epoch_num 200
log_smooth_window: 10
print_batch_step: 10
save_model_dir: ./output/ser_layoutlm_funsd
save_model_dir: ./output/ser_vi_layoutxlm_xfund_zh
save_epoch_step: 2000
# evaluation is run every 10 iterations after the 0th iteration
eval_batch_step: [ 0, 57 ]
eval_batch_step: [ 0, 19 ]
cal_metric_during_train: False
save_inference_dir:
use_visualdl: False
seed: 2022
infer_img: train_data/FUNSD/testing_data/images/83624198.png
save_res_path: ./output/ser_layoutlm_funsd/res/
infer_img: ppstructure/docs/vqa/input/zh_val_42.jpg
# if you want to predict using the groundtruth ocr info,
# you can use the following config
# infer_img: train_data/XFUND/zh_val/val.json
# infer_mode: False
save_res_path: ./output/ser/xfund_zh/res
Architecture:
model_type: vqa
algorithm: &algorithm "LayoutLM"
algorithm: &algorithm "LayoutXLM"
Transform:
Backbone:
name: LayoutLMForSer
name: LayoutXLMForSer
pretrained: True
checkpoints:
# one of base or vi
mode: vi
num_classes: &num_classes 7
Loss:
name: VQASerTokenLayoutLMLoss
num_classes: *num_classes
key: "backbone_out"
Optimizer:
name: AdamW
@ -43,7 +51,7 @@ Optimizer:
PostProcess:
name: VQASerTokenLayoutLMPostProcess
class_path: &class_path ./train_data/FUNSD/class_list.txt
class_path: &class_path train_data/XFUND/class_list_xfun.txt
Metric:
name: VQASerTokenMetric
@ -52,9 +60,10 @@ Metric:
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/FUNSD/training_data/images/
data_dir: train_data/XFUND/zh_train/image
label_file_list:
- ./train_data/FUNSD/train.json
- train_data/XFUND/zh_train/train.json
ratio_list: [ 1.0 ]
transforms:
- DecodeImage: # load image
img_mode: RGB
@ -64,6 +73,8 @@ Train:
algorithm: *algorithm
class_path: *class_path
use_textline_bbox_info: &use_textline_bbox_info True
# one of [None, "tb-yx"]
order_method: &order_method "tb-yx"
- VQATokenPad:
max_seq_len: &max_seq_len 512
return_attention_mask: True
@ -78,8 +89,7 @@ Train:
order: 'hwc'
- ToCHWImage:
- KeepKeys:
# dataloader will return list in this order
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels']
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] # dataloader will return list in this order
loader:
shuffle: True
drop_last: False
@ -89,9 +99,9 @@ Train:
Eval:
dataset:
name: SimpleDataSet
data_dir: train_data/FUNSD/testing_data/images/
data_dir: train_data/XFUND/zh_val/image
label_file_list:
- ./train_data/FUNSD/test.json
- train_data/XFUND/zh_val/val.json
transforms:
- DecodeImage: # load image
img_mode: RGB
@ -101,6 +111,7 @@ Eval:
algorithm: *algorithm
class_path: *class_path
use_textline_bbox_info: *use_textline_bbox_info
order_method: *order_method
- VQATokenPad:
max_seq_len: *max_seq_len
return_attention_mask: True
@ -115,8 +126,7 @@ Eval:
order: 'hwc'
- ToCHWImage:
- KeepKeys:
# dataloader will return list in this order
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels']
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False

View File

@ -0,0 +1,183 @@
Global:
use_gpu: True
epoch_num: &epoch_num 200
log_smooth_window: 10
print_batch_step: 10
save_model_dir: ./output/ser_vi_layoutxlm_xfund_zh_udml
save_epoch_step: 2000
# evaluation is run every 10 iterations after the 0th iteration
eval_batch_step: [ 0, 19 ]
cal_metric_during_train: False
save_inference_dir:
use_visualdl: False
seed: 2022
infer_img: ppstructure/docs/vqa/input/zh_val_42.jpg
save_res_path: ./output/ser_layoutxlm_xfund_zh/res
Architecture:
model_type: &model_type "vqa"
name: DistillationModel
algorithm: Distillation
Models:
Teacher:
pretrained:
freeze_params: false
return_all_feats: true
model_type: *model_type
algorithm: &algorithm "LayoutXLM"
Transform:
Backbone:
name: LayoutXLMForSer
pretrained: True
# one of base or vi
mode: vi
checkpoints:
num_classes: &num_classes 7
Student:
pretrained:
freeze_params: false
return_all_feats: true
model_type: *model_type
algorithm: *algorithm
Transform:
Backbone:
name: LayoutXLMForSer
pretrained: True
# one of base or vi
mode: vi
checkpoints:
num_classes: *num_classes
Loss:
name: CombinedLoss
loss_config_list:
- DistillationVQASerTokenLayoutLMLoss:
weight: 1.0
model_name_list: ["Student", "Teacher"]
key: backbone_out
num_classes: *num_classes
- DistillationSERDMLLoss:
weight: 1.0
act: "softmax"
use_log: true
model_name_pairs:
- ["Student", "Teacher"]
key: backbone_out
- DistillationVQADistanceLoss:
weight: 0.5
mode: "l2"
model_name_pairs:
- ["Student", "Teacher"]
key: hidden_states_5
name: "loss_5"
- DistillationVQADistanceLoss:
weight: 0.5
mode: "l2"
model_name_pairs:
- ["Student", "Teacher"]
key: hidden_states_8
name: "loss_8"
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
lr:
name: Linear
learning_rate: 0.00005
epochs: *epoch_num
warmup_epoch: 10
regularizer:
name: L2
factor: 0.00000
PostProcess:
name: DistillationSerPostProcess
model_name: ["Student", "Teacher"]
key: backbone_out
class_path: &class_path train_data/XFUND/class_list_xfun.txt
Metric:
name: DistillationMetric
base_metric_name: VQASerTokenMetric
main_indicator: hmean
key: "Student"
Train:
dataset:
name: SimpleDataSet
data_dir: train_data/XFUND/zh_train/image
label_file_list:
- train_data/XFUND/zh_train/train.json
ratio_list: [ 1.0 ]
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VQATokenLabelEncode: # Class handling label
contains_re: False
algorithm: *algorithm
class_path: *class_path
# one of [None, "tb-yx"]
order_method: &order_method "tb-yx"
- VQATokenPad:
max_seq_len: &max_seq_len 512
return_attention_mask: True
- VQASerTokenChunk:
max_seq_len: *max_seq_len
- Resize:
size: [224,224]
- NormalizeImage:
scale: 1
mean: [ 123.675, 116.28, 103.53 ]
std: [ 58.395, 57.12, 57.375 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] # dataloader will return list in this order
loader:
shuffle: True
drop_last: False
batch_size_per_card: 4
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: train_data/XFUND/zh_val/image
label_file_list:
- train_data/XFUND/zh_val/val.json
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VQATokenLabelEncode: # Class handling label
contains_re: False
algorithm: *algorithm
class_path: *class_path
order_method: *order_method
- VQATokenPad:
max_seq_len: *max_seq_len
return_attention_mask: True
- VQASerTokenChunk:
max_seq_len: *max_seq_len
- Resize:
size: [224,224]
- NormalizeImage:
scale: 1
mean: [ 123.675, 116.28, 103.53 ]
std: [ 58.395, 57.12, 57.375 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size_per_card: 8
num_workers: 4

View File

@ -0,0 +1,106 @@
Global:
use_gpu: true
epoch_num: 8
log_smooth_window: 200
print_batch_step: 200
save_model_dir: ./output/rec/r45_visionlan
save_epoch_step: 1
# evaluation is run every 2000 iterations
eval_batch_step: [0, 2000]
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: True
infer_img: doc/imgs_words/en/word_2.png
# for data or label process
character_dict_path:
max_text_length: &max_text_length 25
training_step: &training_step LA
infer_mode: False
use_space_char: False
save_res_path: ./output/rec/predicts_visionlan.txt
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
clip_norm: 20.0
group_lr: true
training_step: *training_step
lr:
name: Piecewise
decay_epochs: [6]
values: [0.0001, 0.00001]
regularizer:
name: 'L2'
factor: 0
Architecture:
model_type: rec
algorithm: VisionLAN
Transform:
Backbone:
name: ResNet45
strides: [2, 2, 2, 1, 1]
Head:
name: VLHead
n_layers: 3
n_position: 256
n_dim: 512
max_text_length: *max_text_length
training_step: *training_step
Loss:
name: VLLoss
mode: *training_step
weight_res: 0.5
weight_mas: 0.5
PostProcess:
name: VLLabelDecode
Metric:
name: RecMetric
is_filter: true
Train:
dataset:
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/training/
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- ABINetRecAug:
- VLLabelEncode: # Class handling label
- VLRecResizeImg:
image_shape: [3, 64, 256]
- KeepKeys:
keep_keys: ['image', 'label', 'label_res', 'label_sub', 'label_id', 'length'] # dataloader will return list in this order
loader:
shuffle: True
batch_size_per_card: 220
drop_last: True
num_workers: 4
Eval:
dataset:
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/validation/
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VLLabelEncode: # Class handling label
- VLRecResizeImg:
image_shape: [3, 64, 256]
- KeepKeys:
keep_keys: ['image', 'label', 'label_res', 'label_sub', 'label_id', 'length'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size_per_card: 64
num_workers: 4

View File

@ -1,125 +0,0 @@
Global:
use_gpu: True
epoch_num: &epoch_num 200
log_smooth_window: 10
print_batch_step: 10
save_model_dir: ./output/re_layoutlmv2_funsd
save_epoch_step: 2000
# evaluation is run every 10 iterations after the 0th iteration
eval_batch_step: [ 0, 57 ]
cal_metric_during_train: False
save_inference_dir:
use_visualdl: False
seed: 2022
infer_img: train_data/FUNSD/testing_data/images/83624198.png
save_res_path: ./output/re_layoutlmv2_funsd/res/
Architecture:
model_type: vqa
algorithm: &algorithm "LayoutLMv2"
Transform:
Backbone:
name: LayoutLMv2ForRe
pretrained: True
checkpoints:
Loss:
name: LossFromOutput
key: loss
reduction: mean
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
clip_norm: 10
lr:
learning_rate: 0.00005
warmup_epoch: 10
regularizer:
name: L2
factor: 0.00000
PostProcess:
name: VQAReTokenLayoutLMPostProcess
Metric:
name: VQAReTokenMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/FUNSD/training_data/images/
label_file_list:
- ./train_data/FUNSD/train.json
ratio_list: [ 1.0 ]
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VQATokenLabelEncode: # Class handling label
contains_re: True
algorithm: *algorithm
class_path: &class_path train_data/FUNSD/class_list.txt
- VQATokenPad:
max_seq_len: &max_seq_len 512
return_attention_mask: True
- VQAReTokenRelation:
- VQAReTokenChunk:
max_seq_len: *max_seq_len
- Resize:
size: [224,224]
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
# dataloader will return list in this order
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'entities', 'relations']
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 8
collate_fn: ListCollator
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/FUNSD/testing_data/images/
label_file_list:
- ./train_data/FUNSD/test.json
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VQATokenLabelEncode: # Class handling label
contains_re: True
algorithm: *algorithm
class_path: *class_path
- VQATokenPad:
max_seq_len: *max_seq_len
return_attention_mask: True
- VQAReTokenRelation:
- VQAReTokenChunk:
max_seq_len: *max_seq_len
- Resize:
size: [224,224]
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
# dataloader will return list in this order
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'entities', 'relations']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 8
num_workers: 8
collate_fn: ListCollator

View File

@ -1,124 +0,0 @@
Global:
use_gpu: True
epoch_num: &epoch_num 200
log_smooth_window: 10
print_batch_step: 10
save_model_dir: ./output/ser_layoutlm_sroie
save_epoch_step: 2000
# evaluation is run every 10 iterations after the 0th iteration
eval_batch_step: [ 0, 200 ]
cal_metric_during_train: False
save_inference_dir:
use_visualdl: False
seed: 2022
infer_img: train_data/SROIE/test/X00016469670.jpg
save_res_path: ./output/ser_layoutlm_sroie/res/
Architecture:
model_type: vqa
algorithm: &algorithm "LayoutLM"
Transform:
Backbone:
name: LayoutLMForSer
pretrained: True
checkpoints:
num_classes: &num_classes 9
Loss:
name: VQASerTokenLayoutLMLoss
num_classes: *num_classes
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
lr:
name: Linear
learning_rate: 0.00005
epochs: *epoch_num
warmup_epoch: 2
regularizer:
name: L2
factor: 0.00000
PostProcess:
name: VQASerTokenLayoutLMPostProcess
class_path: &class_path ./train_data/SROIE/class_list.txt
Metric:
name: VQASerTokenMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/SROIE/train
label_file_list:
- ./train_data/SROIE/train.txt
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VQATokenLabelEncode: # Class handling label
contains_re: False
algorithm: *algorithm
class_path: *class_path
use_textline_bbox_info: &use_textline_bbox_info True
- VQATokenPad:
max_seq_len: &max_seq_len 512
return_attention_mask: True
- VQASerTokenChunk:
max_seq_len: *max_seq_len
- Resize:
size: [224,224]
- NormalizeImage:
scale: 1
mean: [ 123.675, 116.28, 103.53 ]
std: [ 58.395, 57.12, 57.375 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
# dataloader will return list in this order
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels']
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/SROIE/test
label_file_list:
- ./train_data/SROIE/test.txt
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VQATokenLabelEncode: # Class handling label
contains_re: False
algorithm: *algorithm
class_path: *class_path
use_textline_bbox_info: *use_textline_bbox_info
- VQATokenPad:
max_seq_len: *max_seq_len
return_attention_mask: True
- VQASerTokenChunk:
max_seq_len: *max_seq_len
- Resize:
size: [224,224]
- NormalizeImage:
scale: 1
mean: [ 123.675, 116.28, 103.53 ]
std: [ 58.395, 57.12, 57.375 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
# dataloader will return list in this order
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 8
num_workers: 4

View File

@ -1,123 +0,0 @@
Global:
use_gpu: True
epoch_num: &epoch_num 200
log_smooth_window: 10
print_batch_step: 10
save_model_dir: ./output/ser_layoutlmv2_funsd
save_epoch_step: 2000
# evaluation is run every 10 iterations after the 0th iteration
eval_batch_step: [ 0, 100 ]
cal_metric_during_train: False
save_inference_dir:
use_visualdl: False
seed: 2022
infer_img: train_data/FUNSD/testing_data/images/83624198.png
save_res_path: ./output/ser_layoutlmv2_funsd/res/
Architecture:
model_type: vqa
algorithm: &algorithm "LayoutLMv2"
Transform:
Backbone:
name: LayoutLMv2ForSer
pretrained: True
checkpoints:
num_classes: &num_classes 7
Loss:
name: VQASerTokenLayoutLMLoss
num_classes: *num_classes
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
lr:
name: Linear
learning_rate: 0.00005
epochs: *epoch_num
warmup_epoch: 2
regularizer:
name: L2
factor: 0.00000
PostProcess:
name: VQASerTokenLayoutLMPostProcess
class_path: &class_path train_data/FUNSD/class_list.txt
Metric:
name: VQASerTokenMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/FUNSD/training_data/images/
label_file_list:
- ./train_data/FUNSD/train.json
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VQATokenLabelEncode: # Class handling label
contains_re: False
algorithm: *algorithm
class_path: *class_path
- VQATokenPad:
max_seq_len: &max_seq_len 512
return_attention_mask: True
- VQASerTokenChunk:
max_seq_len: *max_seq_len
- Resize:
size: [224,224]
- NormalizeImage:
scale: 1
mean: [ 123.675, 116.28, 103.53 ]
std: [ 58.395, 57.12, 57.375 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
# dataloader will return list in this order
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels']
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/FUNSD/testing_data/images/
label_file_list:
- ./train_data/FUNSD/test.json
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VQATokenLabelEncode: # Class handling label
contains_re: False
algorithm: *algorithm
class_path: *class_path
- VQATokenPad:
max_seq_len: *max_seq_len
return_attention_mask: True
- VQASerTokenChunk:
max_seq_len: *max_seq_len
- Resize:
size: [224,224]
- NormalizeImage:
scale: 1
mean: [ 123.675, 116.28, 103.53 ]
std: [ 58.395, 57.12, 57.375 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
# dataloader will return list in this order
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 8
num_workers: 4

View File

@ -1,123 +0,0 @@
Global:
use_gpu: True
epoch_num: &epoch_num 200
log_smooth_window: 10
print_batch_step: 10
save_model_dir: ./output/ser_layoutlmv2_sroie
save_epoch_step: 2000
# evaluation is run every 10 iterations after the 0th iteration
eval_batch_step: [ 0, 200 ]
cal_metric_during_train: False
save_inference_dir:
use_visualdl: False
seed: 2022
infer_img: train_data/SROIE/test/X00016469670.jpg
save_res_path: ./output/ser_layoutlmv2_sroie/res/
Architecture:
model_type: vqa
algorithm: &algorithm "LayoutLMv2"
Transform:
Backbone:
name: LayoutLMv2ForSer
pretrained: True
checkpoints:
num_classes: &num_classes 9
Loss:
name: VQASerTokenLayoutLMLoss
num_classes: *num_classes
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
lr:
name: Linear
learning_rate: 0.00005
epochs: *epoch_num
warmup_epoch: 2
regularizer:
name: L2
factor: 0.00000
PostProcess:
name: VQASerTokenLayoutLMPostProcess
class_path: &class_path ./train_data/SROIE/class_list.txt
Metric:
name: VQASerTokenMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/SROIE/train
label_file_list:
- ./train_data/SROIE/train.txt
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VQATokenLabelEncode: # Class handling label
contains_re: False
algorithm: *algorithm
class_path: *class_path
- VQATokenPad:
max_seq_len: &max_seq_len 512
return_attention_mask: True
- VQASerTokenChunk:
max_seq_len: *max_seq_len
- Resize:
size: [224,224]
- NormalizeImage:
scale: 1
mean: [ 123.675, 116.28, 103.53 ]
std: [ 58.395, 57.12, 57.375 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
# dataloader will return list in this order
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels']
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/SROIE/test
label_file_list:
- ./train_data/SROIE/test.txt
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VQATokenLabelEncode: # Class handling label
contains_re: False
algorithm: *algorithm
class_path: *class_path
- VQATokenPad:
max_seq_len: *max_seq_len
return_attention_mask: True
- VQASerTokenChunk:
max_seq_len: *max_seq_len
- Resize:
size: [224,224]
- NormalizeImage:
scale: 1
mean: [ 123.675, 116.28, 103.53 ]
std: [ 58.395, 57.12, 57.375 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
# dataloader will return list in this order
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 8
num_workers: 4

View File

@ -1,123 +0,0 @@
Global:
use_gpu: True
epoch_num: &epoch_num 200
log_smooth_window: 10
print_batch_step: 10
save_model_dir: ./output/ser_layoutxlm_funsd
save_epoch_step: 2000
# evaluation is run every 10 iterations after the 0th iteration
eval_batch_step: [ 0, 57 ]
cal_metric_during_train: False
save_inference_dir:
use_visualdl: False
seed: 2022
infer_img: train_data/FUNSD/testing_data/images/83624198.png
save_res_path: output/ser_layoutxlm_funsd/res/
Architecture:
model_type: vqa
algorithm: &algorithm "LayoutXLM"
Transform:
Backbone:
name: LayoutXLMForSer
pretrained: True
checkpoints:
num_classes: &num_classes 7
Loss:
name: VQASerTokenLayoutLMLoss
num_classes: *num_classes
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
lr:
name: Linear
learning_rate: 0.00005
epochs: *epoch_num
warmup_epoch: 2
regularizer:
name: L2
factor: 0.00000
PostProcess:
name: VQASerTokenLayoutLMPostProcess
class_path: &class_path ./train_data/FUNSD/class_list.txt
Metric:
name: VQASerTokenMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/FUNSD/training_data/images/
label_file_list:
- ./train_data/FUNSD/train.json
ratio_list: [ 1.0 ]
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VQATokenLabelEncode: # Class handling label
contains_re: False
algorithm: *algorithm
class_path: *class_path
- VQATokenPad:
max_seq_len: &max_seq_len 512
return_attention_mask: True
- VQASerTokenChunk:
max_seq_len: *max_seq_len
- Resize:
size: [224,224]
- NormalizeImage:
scale: 1
mean: [ 123.675, 116.28, 103.53 ]
std: [ 58.395, 57.12, 57.375 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
# dataloader will return list in this order
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels']
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: train_data/FUNSD/testing_data/images/
label_file_list:
- ./train_data/FUNSD/test.json
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VQATokenLabelEncode: # Class handling label
contains_re: False
algorithm: *algorithm
class_path: *class_path
- VQATokenPad:
max_seq_len: *max_seq_len
return_attention_mask: True
- VQASerTokenChunk:
max_seq_len: *max_seq_len
- Resize:
size: [224,224]
- NormalizeImage:
scale: 1
mean: [ 123.675, 116.28, 103.53 ]
std: [ 58.395, 57.12, 57.375 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
# dataloader will return list in this order
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 8
num_workers: 4

View File

@ -1,123 +0,0 @@
Global:
use_gpu: True
epoch_num: &epoch_num 200
log_smooth_window: 10
print_batch_step: 10
save_model_dir: ./output/ser_layoutxlm_sroie
save_epoch_step: 2000
# evaluation is run every 10 iterations after the 0th iteration
eval_batch_step: [ 0, 200 ]
cal_metric_during_train: False
save_inference_dir:
use_visualdl: False
seed: 2022
infer_img: train_data/SROIE/test/X00016469670.jpg
save_res_path: res_img_aug_with_gt
Architecture:
model_type: vqa
algorithm: &algorithm "LayoutXLM"
Transform:
Backbone:
name: LayoutXLMForSer
pretrained: True
checkpoints:
num_classes: &num_classes 9
Loss:
name: VQASerTokenLayoutLMLoss
num_classes: *num_classes
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
lr:
name: Linear
learning_rate: 0.00005
epochs: *epoch_num
warmup_epoch: 2
regularizer:
name: L2
factor: 0.00000
PostProcess:
name: VQASerTokenLayoutLMPostProcess
class_path: &class_path ./train_data/SROIE/class_list.txt
Metric:
name: VQASerTokenMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/SROIE/train
label_file_list:
- ./train_data/SROIE/train.txt
ratio_list: [ 1.0 ]
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VQATokenLabelEncode: # Class handling label
contains_re: False
algorithm: *algorithm
class_path: *class_path
- VQATokenPad:
max_seq_len: &max_seq_len 512
return_attention_mask: True
- VQASerTokenChunk:
max_seq_len: *max_seq_len
- Resize:
size: [224,224]
- NormalizeImage:
scale: 1
mean: [ 123.675, 116.28, 103.53 ]
std: [ 58.395, 57.12, 57.375 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
# dataloader will return list in this order
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels']
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: train_data/SROIE/test
label_file_list:
- ./train_data/SROIE/test.txt
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VQATokenLabelEncode: # Class handling label
contains_re: False
algorithm: *algorithm
class_path: *class_path
- VQATokenPad:
max_seq_len: *max_seq_len
return_attention_mask: True
- VQASerTokenChunk:
max_seq_len: *max_seq_len
- Resize:
size: [224,224]
- NormalizeImage:
scale: 1
mean: [ 123.675, 116.28, 103.53 ]
std: [ 58.395, 57.12, 57.375 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
# dataloader will return list in this order
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 8
num_workers: 4

View File

@ -1,123 +0,0 @@
Global:
use_gpu: True
epoch_num: &epoch_num 100
log_smooth_window: 10
print_batch_step: 10
save_model_dir: ./output/ser_layoutxlm_wildreceipt
save_epoch_step: 2000
# evaluation is run every 10 iterations after the 0th iteration
eval_batch_step: [ 0, 200 ]
cal_metric_during_train: False
save_inference_dir:
use_visualdl: False
seed: 2022
infer_img: train_data//wildreceipt/image_files/Image_12/10/845be0dd6f5b04866a2042abd28d558032ef2576.jpeg
save_res_path: ./output/ser_layoutxlm_wildreceipt/res
Architecture:
model_type: vqa
algorithm: &algorithm "LayoutXLM"
Transform:
Backbone:
name: LayoutXLMForSer
pretrained: True
checkpoints:
num_classes: &num_classes 51
Loss:
name: VQASerTokenLayoutLMLoss
num_classes: *num_classes
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
lr:
name: Linear
learning_rate: 0.00005
epochs: *epoch_num
warmup_epoch: 2
regularizer:
name: L2
factor: 0.00000
PostProcess:
name: VQASerTokenLayoutLMPostProcess
class_path: &class_path ./train_data/wildreceipt/class_list.txt
Metric:
name: VQASerTokenMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/wildreceipt/
label_file_list:
- ./train_data/wildreceipt/wildreceipt_train.txt
ratio_list: [ 1.0 ]
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VQATokenLabelEncode: # Class handling label
contains_re: False
algorithm: *algorithm
class_path: *class_path
- VQATokenPad:
max_seq_len: &max_seq_len 512
return_attention_mask: True
- VQASerTokenChunk:
max_seq_len: *max_seq_len
- Resize:
size: [224,224]
- NormalizeImage:
scale: 1
mean: [ 123.675, 116.28, 103.53 ]
std: [ 58.395, 57.12, 57.375 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
# dataloader will return list in this order
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels']
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: train_data/wildreceipt
label_file_list:
- ./train_data/wildreceipt/wildreceipt_test.txt
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- VQATokenLabelEncode: # Class handling label
contains_re: False
algorithm: *algorithm
class_path: *class_path
- VQATokenPad:
max_seq_len: *max_seq_len
return_attention_mask: True
- VQASerTokenChunk:
max_seq_len: *max_seq_len
- Resize:
size: [224,224]
- NormalizeImage:
scale: 1
mean: [ 123.675, 116.28, 103.53 ]
std: [ 58.395, 57.12, 57.375 ]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
# dataloader will return list in this order
keep_keys: [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 8
num_workers: 4

View File

@ -53,10 +53,11 @@ PP-OCRv3检测模型是对PP-OCRv2中的[CML](https://arxiv.org/pdf/2109.03144.p
|序号|策略|模型大小|hmean|速度cpu + mkldnn)|
|-|-|-|-|-|
|baseline teacher|DB-R50|99M|83.5%|260ms|
|baseline teacher|PP-OCR server|49M|83.2%|171ms|
|teacher1|DB-R50-LK-PAN|124M|85.0%|396ms|
|teacher2|DB-R50-LK-PAN-DML|124M|86.0%|396ms|
|baseline student|PP-OCRv2|3M|83.2%|117ms|
|student0|DB-MV3-RSE-FPN|3.6M|84.5%|124ms|
|student1|DB-MV3-CMLteacher2|3M|84.3%|117ms|
|student2|DB-MV3-RSE-FPN-CMLteacher2|3.6M|85.4%|124ms|
@ -184,7 +185,7 @@ UDMLUnified-Deep Mutual Learning联合互学习是PP-OCRv2中就采用的
**6UIM无标注数据挖掘方案**
UIMUnlabeled Images Mining是一种非常简单的无标注数据挖掘方案。核心思想是利用高精度的文本识别大模型对无标注数据进行预测获取伪标签并且选择预测置信度高的样本作为训练数据用于训练小模型。使用该策略识别模型的准确率进一步提升到79.4%+1%)。
UIMUnlabeled Images Mining是一种非常简单的无标注数据挖掘方案。核心思想是利用高精度的文本识别大模型对无标注数据进行预测获取伪标签并且选择预测置信度高的样本作为训练数据用于训练小模型。使用该策略识别模型的准确率进一步提升到79.4%+1%)。实际操作中我们使用全量数据集训练高精度SVTR-Tiny模型acc=82.5%)进行数据挖掘,点击获取[模型下载地址和使用教程](../../applications/高精度中文识别模型.md)。
<div align="center">
<img src="../ppocr_v3/UIM.png" width="500">

View File

@ -69,6 +69,7 @@
- [x] [SVTR](./algorithm_rec_svtr.md)
- [x] [ViTSTR](./algorithm_rec_vitstr.md)
- [x] [ABINet](./algorithm_rec_abinet.md)
- [x] [VisionLAN](./algorithm_rec_visionlan.md)
- [x] [SPIN](./algorithm_rec_spin.md)
- [x] [RobustScanner](./algorithm_rec_robustscanner.md)
@ -91,6 +92,7 @@
|SVTR|SVTR-Tiny| 89.25% | rec_svtr_tiny_none_ctc_en | [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_en_train.tar) |
|ViTSTR|ViTSTR| 79.82% | rec_vitstr_none_ce | [训练模型](https://paddleocr.bj.bcebos.com/rec_vitstr_none_ce_train.tar) |
|ABINet|Resnet45| 90.75% | rec_r45_abinet | [训练模型](https://paddleocr.bj.bcebos.com/rec_r45_abinet_train.tar) |
|VisionLAN|Resnet45| 90.30% | rec_r45_visionlan | [训练模型](https://paddleocr.bj.bcebos.com/rec_r45_visionlan_train.tar) |
|SPIN|ResNet32| 90.00% | rec_r32_gaspin_bilstm_att | coming soon |
|RobustScanner|ResNet31| 87.77% | rec_r31_robustscanner | coming soon |

View File

@ -0,0 +1,154 @@
# 场景文本识别算法-VisionLAN
- [1. 算法简介](#1)
- [2. 环境配置](#2)
- [3. 模型训练、评估、预测](#3)
- [3.1 训练](#3-1)
- [3.2 评估](#3-2)
- [3.3 预测](#3-3)
- [4. 推理部署](#4)
- [4.1 Python推理](#4-1)
- [4.2 C++推理](#4-2)
- [4.3 Serving服务化部署](#4-3)
- [4.4 更多推理部署](#4-4)
- [5. FAQ](#5)
<a name="1"></a>
## 1. 算法简介
论文信息:
> [From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network](https://arxiv.org/abs/2108.09661)
> Yuxin Wang, Hongtao Xie, Shancheng Fang, Jing Wang, Shenggao Zhu, Yongdong Zhang
> ICCV, 2021
<a name="model"></a>
`VisionLAN`使用MJSynth和SynthText两个文字识别数据集训练在IIIT, SVT, IC13, IC15, SVTP, CUTE数据集上进行评估算法复现效果如下
|模型|骨干网络|配置文件|Acc|下载链接|
| --- | --- | --- | --- | --- |
|VisionLAN|ResNet45|[rec_r45_visionlan.yml](../../configs/rec/rec_r45_visionlan.yml)|90.3%|[预训练、训练模型](https://paddleocr.bj.bcebos.com/rec_r45_visionlan_train.tar)|
<a name="2"></a>
## 2. 环境配置
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境参考[《项目克隆》](./clone.md)克隆项目代码。
<a name="3"></a>
## 3. 模型训练、评估、预测
<a name="3-1"></a>
### 3.1 模型训练
请参考[文本识别训练教程](./recognition.md)。PaddleOCR对代码进行了模块化训练`VisionLAN`识别模型时需要**更换配置文件**为`VisionLAN`的[配置文件](../../configs/rec/rec_r45_visionlan.yml)。
#### 启动训练
具体地,在完成数据准备后,便可以启动训练,训练命令如下:
```shell
#单卡训练(训练周期长,不建议)
python3 tools/train.py -c configs/rec/rec_r45_visionlan.yml
#多卡训练,通过--gpus参数指定卡号
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_r45_visionlan.yml
```
<a name="3-2"></a>
### 3.2 评估
可下载已训练完成的[模型文件](#model),使用如下命令进行评估:
```shell
# 注意将pretrained_model的路径设置为本地路径。
python3 tools/eval.py -c configs/rec/rec_r45_visionlan.yml -o Global.pretrained_model=./rec_r45_visionlan_train/best_accuracy
```
<a name="3-3"></a>
### 3.3 预测
使用如下命令进行单张图片预测:
```shell
# 注意将pretrained_model的路径设置为本地路径。
python3 tools/infer_rec.py -c configs/rec/rec_r45_visionlan.yml -o Global.infer_img='./doc/imgs_words/en/word_2.png' Global.pretrained_model=./rec_r45_visionlan_train/best_accuracy
# 预测文件夹下所有图像时可修改infer_img为文件夹如 Global.infer_img='./doc/imgs_words_en/'。
```
<a name="4"></a>
## 4. 推理部署
<a name="4-1"></a>
### 4.1 Python推理
首先将训练得到best模型转换成inference model。这里以训练完成的模型为例[模型下载地址](https://paddleocr.bj.bcebos.com/rec_r45_visionlan_train.tar)),可以使用如下命令进行转换:
```shell
# 注意将pretrained_model的路径设置为本地路径。
python3 tools/export_model.py -c configs/rec/rec_r45_visionlan.yml -o Global.pretrained_model=./rec_r45_visionlan_train/best_accuracy Global.save_inference_dir=./inference/rec_r45_visionlan/
```
**注意:**
- 如果您是在自己的数据集上训练的模型,并且调整了字典文件,请注意修改配置文件中的`character_dict_path`是否是所需要的字典文件。
- 如果您修改了训练时的输入大小,请修改`tools/export_model.py`文件中的对应VisionLAN的`infer_shape`。
转换成功后,在目录下有三个文件:
```
./inference/rec_r45_visionlan/
├── inference.pdiparams # 识别inference模型的参数文件
├── inference.pdiparams.info # 识别inference模型的参数信息可忽略
└── inference.pdmodel # 识别inference模型的program文件
```
执行如下命令进行模型推理:
```shell
python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words/en/word_2.png' --rec_model_dir='./inference/rec_r45_visionlan/' --rec_algorithm='VisionLAN' --rec_image_shape='3,64,256' --rec_char_dict_path='./ppocr/utils/dict36.txt'
# 预测文件夹下所有图像时可修改image_dir为文件夹如 --image_dir='./doc/imgs_words_en/'。
```
![](../imgs_words/en/word_2.png)
执行命令后,上面图像的预测结果(识别的文本和得分)会打印到屏幕上,示例如下:
结果如下:
```shell
Predicts of ./doc/imgs_words/en/word_2.png:('yourself', 0.97076982)
```
**注意**
- 训练上述模型采用的图像分辨率是[364256],需要通过参数`rec_image_shape`设置为您训练时的识别图像形状。
- 在推理时需要设置参数`rec_char_dict_path`指定字典,如果您修改了字典,请修改该参数为您的字典文件。
- 如果您修改了预处理方法,需修改`tools/infer/predict_rec.py`中VisionLAN的预处理为您的预处理方法。
<a name="4-2"></a>
### 4.2 C++推理部署
由于C++预处理后处理还未支持VisionLAN所以暂未支持
<a name="4-3"></a>
### 4.3 Serving服务化部署
暂不支持
<a name="4-4"></a>
### 4.4 更多推理部署
暂不支持
<a name="5"></a>
## 5. FAQ
1. MJSynth和SynthText两种数据集来自于[VisionLAN源repo](https://github.com/wangyuxin87/VisionLAN) 。
2. 我们使用VisionLAN作者提供的预训练模型进行finetune训练。
## 引用
```bibtex
@inproceedings{wang2021two,
title={From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network},
author={Wang, Yuxin and Xie, Hongtao and Fang, Shancheng and Wang, Jing and Zhu, Shenggao and Zhang, Yongdong},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={14194--14203},
year={2021}
}
```

View File

@ -65,7 +65,7 @@ python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/
```
上述指令中,通过-c 选择训练使用configs/det/det_db_mv3.yml配置文件。
上述指令中,通过-c 选择训练使用configs/det/det_mv3_db.yml配置文件。
有关配置文件的详细解释,请参考[链接](./config.md)。
您也可以通过-o参数在不需要修改yml文件的情况下改变训练的参数比如调整训练的学习率为0.0001

View File

@ -55,10 +55,11 @@ The ablation experiments are as follows:
|ID|Strategy|Model Size|Hmean|The Inference Timecpu + mkldnn)|
|-|-|-|-|-|
|baseline teacher|DB-R50|99M|83.5%|260ms|
|baseline teacher|PP-OCR server|49M|83.2%|171ms|
|teacher1|DB-R50-LK-PAN|124M|85.0%|396ms|
|teacher2|DB-R50-LK-PAN-DML|124M|86.0%|396ms|
|baseline student|PP-OCRv2|3M|83.2%|117ms|
|student0|DB-MV3-RSE-FPN|3.6M|84.5%|124ms|
|student1|DB-MV3-CMLteacher2|3M|84.3%|117ms|
|student2|DB-MV3-RSE-FPN-CMLteacher2|3.6M|85.4%|124ms|
@ -199,7 +200,7 @@ UDML (Unified-Deep Mutual Learning) is a strategy proposed in PP-OCRv2 which is
**6UIMUnlabeled Images Mining**
UIM (Unlabeled Images Mining) is a very simple unlabeled data mining strategy. The main idea is to use a high-precision text recognition model to predict unlabeled images to obtain pseudo-labels, and select samples with high prediction confidence as training data for training lightweight models. Using this strategy, the accuracy of the recognition model is further improved to 79.4% (+1%).
UIM (Unlabeled Images Mining) is a very simple unlabeled data mining strategy. The main idea is to use a high-precision text recognition model to predict unlabeled images to obtain pseudo-labels, and select samples with high prediction confidence as training data for training lightweight models. Using this strategy, the accuracy of the recognition model is further improved to 79.4% (+1%). In practice, we use the full data set to train the high-precision SVTR_Tiny model (acc=82.5%) for data mining. [SVTR_Tiny model download and tutorial](../../applications/高精度中文识别模型.md).
<div align="center">
<img src="../ppocr_v3/UIM.png" width="500">

View File

@ -68,6 +68,7 @@ Supported text recognition algorithms (Click the link to get the tutorial):
- [x] [SVTR](./algorithm_rec_svtr_en.md)
- [x] [ViTSTR](./algorithm_rec_vitstr_en.md)
- [x] [ABINet](./algorithm_rec_abinet_en.md)
- [x] [VisionLAN](./algorithm_rec_visionlan_en.md)
- [x] [SPIN](./algorithm_rec_spin_en.md)
- [x] [RobustScanner](./algorithm_rec_robustscanner_en.md)
@ -90,6 +91,7 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r
|SVTR|SVTR-Tiny| 89.25% | rec_svtr_tiny_none_ctc_en | [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_en_train.tar) |
|ViTSTR|ViTSTR| 79.82% | rec_vitstr_none_ce | [trained model](https://paddleocr.bj.bcebos.com/rec_vitstr_none_none_train.tar) |
|ABINet|Resnet45| 90.75% | rec_r45_abinet | [trained model](https://paddleocr.bj.bcebos.com/rec_r45_abinet_train.tar) |
|VisionLAN|Resnet45| 90.30% | rec_r45_visionlan | [trained model](https://paddleocr.bj.bcebos.com/rec_r45_visionlan_train.tar) |
|SPIN|ResNet32| 90.00% | rec_r32_gaspin_bilstm_att | coming soon |
|RobustScanner|ResNet31| 87.77% | rec_r31_robustscanner | coming soon |

View File

@ -0,0 +1,135 @@
# VisionLAN
- [1. Introduction](#1)
- [2. Environment](#2)
- [3. Model Training / Evaluation / Prediction](#3)
- [3.1 Training](#3-1)
- [3.2 Evaluation](#3-2)
- [3.3 Prediction](#3-3)
- [4. Inference and Deployment](#4)
- [4.1 Python Inference](#4-1)
- [4.2 C++ Inference](#4-2)
- [4.3 Serving](#4-3)
- [4.4 More](#4-4)
- [5. FAQ](#5)
<a name="1"></a>
## 1. Introduction
Paper:
> [From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network](https://arxiv.org/abs/2108.09661)
> Yuxin Wang, Hongtao Xie, Shancheng Fang, Jing Wang, Shenggao Zhu, Yongdong Zhang
> ICCV, 2021
Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:
|Model|Backbone|config|Acc|Download link|
| --- | --- | --- | --- | --- |
|VisionLAN|ResNet45|[rec_r45_visionlan.yml](../../configs/rec/rec_r45_visionlan.yml)|90.3%|[预训练、训练模型](https://paddleocr.bj.bcebos.com/rec_r45_visionlan_train.tar)|
<a name="2"></a>
## 2. Environment
Please refer to ["Environment Preparation"](./environment_en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone_en.md) to clone the project code.
<a name="3"></a>
## 3. Model Training / Evaluation / Prediction
Please refer to [Text Recognition Tutorial](./recognition_en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
Training:
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
```
#Single GPU training (long training period, not recommended)
python3 tools/train.py -c configs/rec/rec_r45_visionlan.yml
#Multi GPU training, specify the gpu number through the --gpus parameter
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_r45_visionlan.yml
```
Evaluation:
```
# GPU evaluation
python3 tools/eval.py -c configs/rec/rec_r45_visionlan.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
```
Prediction:
```
# The configuration file used for prediction must match the training
python3 tools/infer_rec.py -c configs/rec/rec_r45_visionlan.yml -o Global.infer_img='./doc/imgs_words/en/word_2.png' Global.pretrained_model=./rec_r45_visionlan_train/best_accuracy
```
<a name="4"></a>
## 4. Inference and Deployment
<a name="4-1"></a>
### 4.1 Python Inference
First, the model saved during the VisionLAN text recognition training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/rec_r45_visionlan_train.tar)) ), you can use the following command to convert:
```
python3 tools/export_model.py -c configs/rec/rec_r45_visionlan.yml -o Global.pretrained_model=./rec_r45_visionlan_train/best_accuracy Global.save_inference_dir=./inference/rec_r45_visionlan/
```
**Note:**
- If you are training the model on your own dataset and have modified the dictionary file, please pay attention to modify the `character_dict_path` in the configuration file to the modified dictionary file.
- If you modified the input size during training, please modify the `infer_shape` corresponding to VisionLAN in the `tools/export_model.py` file.
After the conversion is successful, there are three files in the directory:
```
./inference/rec_r45_visionlan/
├── inference.pdiparams
├── inference.pdiparams.info
└── inference.pdmodel
```
For VisionLAN text recognition model inference, the following commands can be executed:
```
python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words/en/word_2.png' --rec_model_dir='./inference/rec_r45_visionlan/' --rec_algorithm='VisionLAN' --rec_image_shape='3,64,256' --rec_char_dict_path='./ppocr/utils/dict36.txt'
```
![](../imgs_words/en/word_2.png)
After executing the command, the prediction result (recognized text and score) of the image above is printed to the screen, an example is as follows:
The result is as follows:
```shell
Predicts of ./doc/imgs_words/en/word_2.png:('yourself', 0.97076982)
```
<a name="4-2"></a>
### 4.2 C++ Inference
Not supported
<a name="4-3"></a>
### 4.3 Serving
Not supported
<a name="4-4"></a>
### 4.4 More
Not supported
<a name="5"></a>
## 5. FAQ
1. Note that the MJSynth and SynthText datasets come from [VisionLAN repo](https://github.com/wangyuxin87/VisionLAN).
2. We use the pre-trained model provided by the VisionLAN authors for finetune training.
## Citation
```bibtex
@inproceedings{wang2021two,
title={From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network},
author={Wang, Yuxin and Xie, Hongtao and Fang, Shancheng and Wang, Jing and Zhu, Shenggao and Zhang, Yongdong},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={14194--14203},
year={2021}
}
```

View File

@ -51,7 +51,7 @@ python3 tools/train.py -c configs/det/det_mv3_db.yml \
-o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
```
In the above instruction, use `-c` to select the training to use the `configs/det/det_db_mv3.yml` configuration file.
In the above instruction, use `-c` to select the training to use the `configs/det/det_mv3_db.yml` configuration file.
For a detailed explanation of the configuration file, please refer to [config](./config_en.md).
You can also use `-o` to change the training parameters without modifying the yml file. For example, adjust the training learning rate to 0.0001

View File

@ -25,8 +25,9 @@ from .make_pse_gt import MakePseGt
from .rec_img_aug import BaseDataAugmentation, RecAug, RecConAug, RecResizeImg, ClsResizeImg, \
SRNRecResizeImg, GrayRecResizeImg, SARRecResizeImg, PRENResizeImg, \
ABINetRecResizeImg, SVTRRecResizeImg, ABINetRecAug, SPINRecResizeImg, RobustScannerRecResizeImg
SRNRecResizeImg, GrayRecResizeImg, SARRecResizeImg, PRENResizeImg, \
ABINetRecResizeImg, SVTRRecResizeImg, ABINetRecAug, VLRecResizeImg, SPINRecResizeImg, RobustScannerRecResizeImg
from .ssl_img_aug import SSLRotateResize
from .randaugment import RandAugment
from .copy_paste import CopyPaste

View File

@ -23,7 +23,10 @@ import string
from shapely.geometry import LineString, Point, Polygon
import json
import copy
from random import sample
from ppocr.utils.logging import get_logger
from ppocr.data.imaug.vqa.augment import order_by_tbyx
class ClsLabelEncode(object):
@ -97,12 +100,13 @@ class BaseRecLabelEncode(object):
def __init__(self,
max_text_length,
character_dict_path=None,
use_space_char=False):
use_space_char=False,
lower=False):
self.max_text_len = max_text_length
self.beg_str = "sos"
self.end_str = "eos"
self.lower = False
self.lower = lower
if character_dict_path is None:
logger = get_logger()
@ -870,6 +874,7 @@ class VQATokenLabelEncode(object):
add_special_ids=False,
algorithm='LayoutXLM',
use_textline_bbox_info=True,
order_method=None,
infer_mode=False,
ocr_engine=None,
**kwargs):
@ -899,6 +904,8 @@ class VQATokenLabelEncode(object):
self.infer_mode = infer_mode
self.ocr_engine = ocr_engine
self.use_textline_bbox_info = use_textline_bbox_info
self.order_method = order_method
assert self.order_method in [None, "tb-yx"]
def split_bbox(self, bbox, text, tokenizer):
words = text.split()
@ -938,6 +945,14 @@ class VQATokenLabelEncode(object):
# load bbox and label info
ocr_info = self._load_ocr_info(data)
for idx in range(len(ocr_info)):
if "bbox" not in ocr_info[idx]:
ocr_info[idx]["bbox"] = self.trans_poly_to_bbox(ocr_info[idx][
"points"])
if self.order_method == "tb-yx":
ocr_info = order_by_tbyx(ocr_info)
# for re
train_re = self.contains_re and not self.infer_mode
if train_re:
@ -977,7 +992,10 @@ class VQATokenLabelEncode(object):
info["bbox"] = self.trans_poly_to_bbox(info["points"])
encode_res = self.tokenizer.encode(
text, pad_to_max_seq_len=False, return_attention_mask=True)
text,
pad_to_max_seq_len=False,
return_attention_mask=True,
return_token_type_ids=True)
if not self.add_special_ids:
# TODO: use tok.all_special_ids to remove
@ -1049,10 +1067,10 @@ class VQATokenLabelEncode(object):
return data
def trans_poly_to_bbox(self, poly):
x1 = np.min([p[0] for p in poly])
x2 = np.max([p[0] for p in poly])
y1 = np.min([p[1] for p in poly])
y2 = np.max([p[1] for p in poly])
x1 = int(np.min([p[0] for p in poly]))
x2 = int(np.max([p[0] for p in poly]))
y1 = int(np.min([p[1] for p in poly]))
y2 = int(np.max([p[1] for p in poly]))
return [x1, y1, x2, y2]
def _load_ocr_info(self, data):
@ -1217,6 +1235,7 @@ class ABINetLabelEncode(BaseRecLabelEncode):
dict_character = ['</s>'] + dict_character
return dict_character
class SPINLabelEncode(AttnLabelEncode):
""" Convert between text-label and text-index """
@ -1229,6 +1248,7 @@ class SPINLabelEncode(AttnLabelEncode):
super(SPINLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char)
self.lower = lower
def add_special_char(self, dict_character):
self.beg_str = "sos"
self.end_str = "eos"
@ -1248,4 +1268,68 @@ class SPINLabelEncode(AttnLabelEncode):
padded_text[:len(target)] = target
data['label'] = np.array(padded_text)
return data
return data
class VLLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
use_space_char=False,
lower=True,
**kwargs):
super(VLLabelEncode, self).__init__(
max_text_length, character_dict_path, use_space_char, lower)
self.character = self.character[10:] + self.character[
1:10] + [self.character[0]]
self.dict = {}
for i, char in enumerate(self.character):
self.dict[char] = i
def __call__(self, data):
text = data['label'] # original string
# generate occluded text
len_str = len(text)
if len_str <= 0:
return None
change_num = 1
order = list(range(len_str))
change_id = sample(order, change_num)[0]
label_sub = text[change_id]
if change_id == (len_str - 1):
label_res = text[:change_id]
elif change_id == 0:
label_res = text[1:]
else:
label_res = text[:change_id] + text[change_id + 1:]
data['label_res'] = label_res # remaining string
data['label_sub'] = label_sub # occluded character
data['label_id'] = change_id # character index
# encode label
text = self.encode(text)
if text is None:
return None
text = [i + 1 for i in text]
data['length'] = np.array(len(text))
text = text + [0] * (self.max_text_len - len(text))
data['label'] = np.array(text)
label_res = self.encode(label_res)
label_sub = self.encode(label_sub)
if label_res is None:
label_res = []
else:
label_res = [i + 1 for i in label_res]
if label_sub is None:
label_sub = []
else:
label_sub = [i + 1 for i in label_sub]
data['length_res'] = np.array(len(label_res))
data['length_sub'] = np.array(len(label_sub))
label_res = label_res + [0] * (self.max_text_len - len(label_res))
label_sub = label_sub + [0] * (self.max_text_len - len(label_sub))
data['label_res'] = np.array(label_res)
data['label_sub'] = np.array(label_sub)
return data

View File

@ -205,6 +205,38 @@ class RecResizeImg(object):
return data
class VLRecResizeImg(object):
def __init__(self,
image_shape,
infer_mode=False,
character_dict_path='./ppocr/utils/ppocr_keys_v1.txt',
padding=True,
**kwargs):
self.image_shape = image_shape
self.infer_mode = infer_mode
self.character_dict_path = character_dict_path
self.padding = padding
def __call__(self, data):
img = data['image']
imgC, imgH, imgW = self.image_shape
resized_image = cv2.resize(
img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
resized_w = imgW
resized_image = resized_image.astype('float32')
if self.image_shape[0] == 1:
resized_image = resized_image / 255
norm_img = resized_image[np.newaxis, :]
else:
norm_img = resized_image.transpose((2, 0, 1)) / 255
valid_ratio = min(1.0, float(resized_w / imgW))
data['image'] = norm_img
data['valid_ratio'] = valid_ratio
return data
class SRNRecResizeImg(object):
def __init__(self, image_shape, num_heads, max_text_length, **kwargs):
self.image_shape = image_shape
@ -259,6 +291,7 @@ class PRENResizeImg(object):
data['image'] = resized_img.astype(np.float32)
return data
class SPINRecResizeImg(object):
def __init__(self,
image_shape,
@ -267,7 +300,7 @@ class SPINRecResizeImg(object):
std=(127.5, 127.5, 127.5),
**kwargs):
self.image_shape = image_shape
self.mean = np.array(mean, dtype=np.float32)
self.std = np.array(std, dtype=np.float32)
self.interpolation = interpolation
@ -303,6 +336,7 @@ class SPINRecResizeImg(object):
data['image'] = img
return data
class GrayRecResizeImg(object):
def __init__(self,
image_shape,

View File

@ -13,12 +13,10 @@
# limitations under the License.
from .token import VQATokenPad, VQASerTokenChunk, VQAReTokenChunk, VQAReTokenRelation
from .augment import DistortBBox
__all__ = [
'VQATokenPad',
'VQASerTokenChunk',
'VQAReTokenChunk',
'VQAReTokenRelation',
'DistortBBox',
]

View File

@ -16,22 +16,18 @@ import os
import sys
import numpy as np
import random
from copy import deepcopy
class DistortBBox:
def __init__(self, prob=0.5, max_scale=1, **kwargs):
"""Random distort bbox
"""
self.prob = prob
self.max_scale = max_scale
def __call__(self, data):
if random.random() > self.prob:
return data
bbox = np.array(data['bbox'])
rnd_scale = (np.random.rand(*bbox.shape) - 0.5) * 2 * self.max_scale
bbox = np.round(bbox + rnd_scale).astype(bbox.dtype)
data['bbox'] = np.clip(data['bbox'], 0, 1000)
data['bbox'] = bbox.tolist()
sys.stdout.flush()
return data
def order_by_tbyx(ocr_info):
res = sorted(ocr_info, key=lambda r: (r["bbox"][1], r["bbox"][0]))
for i in range(len(res) - 1):
for j in range(i, 0, -1):
if abs(res[j + 1]["bbox"][1] - res[j]["bbox"][1]) < 20 and \
(res[j + 1]["bbox"][0] < res[j]["bbox"][0]):
tmp = deepcopy(res[j])
res[j] = deepcopy(res[j + 1])
res[j + 1] = deepcopy(tmp)
else:
break
return res

View File

@ -35,6 +35,7 @@ from .rec_sar_loss import SARLoss
from .rec_aster_loss import AsterLoss
from .rec_pren_loss import PRENLoss
from .rec_multi_loss import MultiLoss
from .rec_vl_loss import VLLoss
from .rec_spin_att_loss import SPINAttentionLoss
# cls loss
@ -63,7 +64,7 @@ def build_loss(config):
'ClsLoss', 'AttentionLoss', 'SRNLoss', 'PGLoss', 'CombinedLoss',
'CELoss', 'TableAttentionLoss', 'SARLoss', 'AsterLoss', 'SDMGRLoss',
'VQASerTokenLayoutLMLoss', 'LossFromOutput', 'PRENLoss', 'MultiLoss',
'TableMasterLoss', 'SPINAttentionLoss'
'TableMasterLoss', 'SPINAttentionLoss', 'VLLoss'
]
config = copy.deepcopy(config)
module_name = config.pop('name')

View File

@ -63,18 +63,21 @@ class KLJSLoss(object):
def __call__(self, p1, p2, reduction="mean"):
if self.mode.lower() == 'kl':
loss = paddle.multiply(p2, paddle.log((p2 + 1e-5) / (p1 + 1e-5) + 1e-5))
loss = paddle.multiply(p2,
paddle.log((p2 + 1e-5) / (p1 + 1e-5) + 1e-5))
loss += paddle.multiply(
p1, paddle.log((p1 + 1e-5) / (p2 + 1e-5) + 1e-5))
p1, paddle.log((p1 + 1e-5) / (p2 + 1e-5) + 1e-5))
loss *= 0.5
elif self.mode.lower() == "js":
loss = paddle.multiply(p2, paddle.log((2*p2 + 1e-5) / (p1 + p2 + 1e-5) + 1e-5))
loss = paddle.multiply(
p2, paddle.log((2 * p2 + 1e-5) / (p1 + p2 + 1e-5) + 1e-5))
loss += paddle.multiply(
p1, paddle.log((2*p1 + 1e-5) / (p1 + p2 + 1e-5) + 1e-5))
p1, paddle.log((2 * p1 + 1e-5) / (p1 + p2 + 1e-5) + 1e-5))
loss *= 0.5
else:
raise ValueError("The mode.lower() if KLJSLoss should be one of ['kl', 'js']")
raise ValueError(
"The mode.lower() if KLJSLoss should be one of ['kl', 'js']")
if reduction == "mean":
loss = paddle.mean(loss, axis=[1, 2])
elif reduction == "none" or reduction is None:
@ -154,7 +157,9 @@ class LossFromOutput(nn.Layer):
self.reduction = reduction
def forward(self, predicts, batch):
loss = predicts[self.key]
loss = predicts
if self.key is not None and isinstance(predicts, dict):
loss = loss[self.key]
if self.reduction == 'mean':
loss = paddle.mean(loss)
elif self.reduction == 'sum':

View File

@ -24,6 +24,9 @@ from .distillation_loss import DistillationCTCLoss
from .distillation_loss import DistillationSARLoss
from .distillation_loss import DistillationDMLLoss
from .distillation_loss import DistillationDistanceLoss, DistillationDBLoss, DistillationDilaDBLoss
from .distillation_loss import DistillationVQASerTokenLayoutLMLoss, DistillationSERDMLLoss
from .distillation_loss import DistillationLossFromOutput
from .distillation_loss import DistillationVQADistanceLoss
class CombinedLoss(nn.Layer):

View File

@ -21,8 +21,10 @@ from .rec_ctc_loss import CTCLoss
from .rec_sar_loss import SARLoss
from .basic_loss import DMLLoss
from .basic_loss import DistanceLoss
from .basic_loss import LossFromOutput
from .det_db_loss import DBLoss
from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss
from .vqa_token_layoutlm_loss import VQASerTokenLayoutLMLoss
def _sum_loss(loss_dict):
@ -322,3 +324,133 @@ class DistillationDistanceLoss(DistanceLoss):
loss_dict["{}_{}_{}_{}".format(self.name, pair[0], pair[1],
idx)] = loss
return loss_dict
class DistillationVQASerTokenLayoutLMLoss(VQASerTokenLayoutLMLoss):
def __init__(self,
num_classes,
model_name_list=[],
key=None,
name="loss_ser"):
super().__init__(num_classes=num_classes)
self.model_name_list = model_name_list
self.key = key
self.name = name
def forward(self, predicts, batch):
loss_dict = dict()
for idx, model_name in enumerate(self.model_name_list):
out = predicts[model_name]
if self.key is not None:
out = out[self.key]
loss = super().forward(out, batch)
loss_dict["{}_{}".format(self.name, model_name)] = loss["loss"]
return loss_dict
class DistillationLossFromOutput(LossFromOutput):
def __init__(self,
reduction="none",
model_name_list=[],
dist_key=None,
key="loss",
name="loss_re"):
super().__init__(key=key, reduction=reduction)
self.model_name_list = model_name_list
self.name = name
self.dist_key = dist_key
def forward(self, predicts, batch):
loss_dict = dict()
for idx, model_name in enumerate(self.model_name_list):
out = predicts[model_name]
if self.dist_key is not None:
out = out[self.dist_key]
loss = super().forward(out, batch)
loss_dict["{}_{}".format(self.name, model_name)] = loss["loss"]
return loss_dict
class DistillationSERDMLLoss(DMLLoss):
"""
"""
def __init__(self,
act="softmax",
use_log=True,
num_classes=7,
model_name_pairs=[],
key=None,
name="loss_dml_ser"):
super().__init__(act=act, use_log=use_log)
assert isinstance(model_name_pairs, list)
self.key = key
self.name = name
self.num_classes = num_classes
self.model_name_pairs = model_name_pairs
def forward(self, predicts, batch):
loss_dict = dict()
for idx, pair in enumerate(self.model_name_pairs):
out1 = predicts[pair[0]]
out2 = predicts[pair[1]]
if self.key is not None:
out1 = out1[self.key]
out2 = out2[self.key]
out1 = out1.reshape([-1, out1.shape[-1]])
out2 = out2.reshape([-1, out2.shape[-1]])
attention_mask = batch[2]
if attention_mask is not None:
active_output = attention_mask.reshape([-1, ]) == 1
out1 = out1[active_output]
out2 = out2[active_output]
loss_dict["{}_{}".format(self.name, idx)] = super().forward(out1,
out2)
return loss_dict
class DistillationVQADistanceLoss(DistanceLoss):
def __init__(self,
mode="l2",
model_name_pairs=[],
key=None,
name="loss_distance",
**kargs):
super().__init__(mode=mode, **kargs)
assert isinstance(model_name_pairs, list)
self.key = key
self.model_name_pairs = model_name_pairs
self.name = name + "_l2"
def forward(self, predicts, batch):
loss_dict = dict()
for idx, pair in enumerate(self.model_name_pairs):
out1 = predicts[pair[0]]
out2 = predicts[pair[1]]
attention_mask = batch[2]
if self.key is not None:
out1 = out1[self.key]
out2 = out2[self.key]
if attention_mask is not None:
max_len = attention_mask.shape[-1]
out1 = out1[:, :max_len]
out2 = out2[:, :max_len]
out1 = out1.reshape([-1, out1.shape[-1]])
out2 = out2.reshape([-1, out2.shape[-1]])
if attention_mask is not None:
active_output = attention_mask.reshape([-1, ]) == 1
out1 = out1[active_output]
out2 = out2[active_output]
loss = super().forward(out1, out2)
if isinstance(loss, dict):
for key in loss:
loss_dict["{}_{}nohu_{}".format(self.name, key,
idx)] = loss[key]
else:
loss_dict["{}_{}_{}_{}".format(self.name, pair[0], pair[1],
idx)] = loss
return loss_dict

View File

@ -0,0 +1,70 @@
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/wangyuxin87/VisionLAN
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
class VLLoss(nn.Layer):
def __init__(self, mode='LF_1', weight_res=0.5, weight_mas=0.5, **kwargs):
super(VLLoss, self).__init__()
self.loss_func = paddle.nn.loss.CrossEntropyLoss(reduction="mean")
assert mode in ['LF_1', 'LF_2', 'LA']
self.mode = mode
self.weight_res = weight_res
self.weight_mas = weight_mas
def flatten_label(self, target):
label_flatten = []
label_length = []
for i in range(0, target.shape[0]):
cur_label = target[i].tolist()
label_flatten += cur_label[:cur_label.index(0) + 1]
label_length.append(cur_label.index(0) + 1)
label_flatten = paddle.to_tensor(label_flatten, dtype='int64')
label_length = paddle.to_tensor(label_length, dtype='int32')
return (label_flatten, label_length)
def _flatten(self, sources, lengths):
return paddle.concat([t[:l] for t, l in zip(sources, lengths)])
def forward(self, predicts, batch):
text_pre = predicts[0]
target = batch[1].astype('int64')
label_flatten, length = self.flatten_label(target)
text_pre = self._flatten(text_pre, length)
if self.mode == 'LF_1':
loss = self.loss_func(text_pre, label_flatten)
else:
text_rem = predicts[1]
text_mas = predicts[2]
target_res = batch[2].astype('int64')
target_sub = batch[3].astype('int64')
label_flatten_res, length_res = self.flatten_label(target_res)
label_flatten_sub, length_sub = self.flatten_label(target_sub)
text_rem = self._flatten(text_rem, length_res)
text_mas = self._flatten(text_mas, length_sub)
loss_ori = self.loss_func(text_pre, label_flatten)
loss_res = self.loss_func(text_rem, label_flatten_res)
loss_mas = self.loss_func(text_mas, label_flatten_sub)
loss = loss_ori + loss_res * self.weight_res + loss_mas * self.weight_mas
return {'loss': loss}

View File

@ -17,26 +17,30 @@ from __future__ import division
from __future__ import print_function
from paddle import nn
from ppocr.losses.basic_loss import DMLLoss
class VQASerTokenLayoutLMLoss(nn.Layer):
def __init__(self, num_classes):
def __init__(self, num_classes, key=None):
super().__init__()
self.loss_class = nn.CrossEntropyLoss()
self.num_classes = num_classes
self.ignore_index = self.loss_class.ignore_index
self.key = key
def forward(self, predicts, batch):
if isinstance(predicts, dict) and self.key is not None:
predicts = predicts[self.key]
labels = batch[5]
attention_mask = batch[2]
if attention_mask is not None:
active_loss = attention_mask.reshape([-1, ]) == 1
active_outputs = predicts.reshape(
active_output = predicts.reshape(
[-1, self.num_classes])[active_loss]
active_labels = labels.reshape([-1, ])[active_loss]
loss = self.loss_class(active_outputs, active_labels)
active_label = labels.reshape([-1, ])[active_loss]
loss = self.loss_class(active_output, active_label)
else:
loss = self.loss_class(
predicts.reshape([-1, self.num_classes]),
labels.reshape([-1, ]))
return {'loss': loss}
return {'loss': loss}

View File

@ -19,6 +19,8 @@ from .rec_metric import RecMetric
from .det_metric import DetMetric
from .e2e_metric import E2EMetric
from .cls_metric import ClsMetric
from .vqa_token_ser_metric import VQASerTokenMetric
from .vqa_token_re_metric import VQAReTokenMetric
class DistillationMetric(object):

View File

@ -73,28 +73,40 @@ class BaseModel(nn.Layer):
self.return_all_feats = config.get("return_all_feats", False)
def forward(self, x, data=None):
y = dict()
if self.use_transform:
x = self.transform(x)
x = self.backbone(x)
y["backbone_out"] = x
if self.use_neck:
x = self.neck(x)
y["neck_out"] = x
if self.use_head:
x = self.head(x, targets=data)
# for multi head, save ctc neck out for udml
if isinstance(x, dict) and 'ctc_neck' in x.keys():
y["neck_out"] = x["ctc_neck"]
y["head_out"] = x
elif isinstance(x, dict):
if isinstance(x, dict):
y.update(x)
else:
y["head_out"] = x
y["backbone_out"] = x
final_name = "backbone_out"
if self.use_neck:
x = self.neck(x)
if isinstance(x, dict):
y.update(x)
else:
y["neck_out"] = x
final_name = "neck_out"
if self.use_head:
x = self.head(x, targets=data)
# for multi head, save ctc neck out for udml
if isinstance(x, dict) and 'ctc_neck' in x.keys():
y["neck_out"] = x["ctc_neck"]
y["head_out"] = x
elif isinstance(x, dict):
y.update(x)
else:
y["head_out"] = x
final_name = "head_out"
if self.return_all_feats:
if self.training:
return y
elif isinstance(x, dict):
return x
else:
return {"head_out": y["head_out"]}
return {final_name: x}
else:
return x

View File

@ -84,11 +84,15 @@ class BasicBlock(nn.Layer):
class ResNet45(nn.Layer):
def __init__(self, block=BasicBlock, layers=[3, 4, 6, 6, 3], in_channels=3):
def __init__(self,
in_channels=3,
block=BasicBlock,
layers=[3, 4, 6, 6, 3],
strides=[2, 1, 2, 1, 1]):
self.inplanes = 32
super(ResNet45, self).__init__()
self.conv1 = nn.Conv2D(
3,
in_channels,
32,
kernel_size=3,
stride=1,
@ -98,18 +102,13 @@ class ResNet45(nn.Layer):
self.bn1 = nn.BatchNorm2D(32)
self.relu = nn.ReLU()
self.layer1 = self._make_layer(block, 32, layers[0], stride=2)
self.layer2 = self._make_layer(block, 64, layers[1], stride=1)
self.layer3 = self._make_layer(block, 128, layers[2], stride=2)
self.layer4 = self._make_layer(block, 256, layers[3], stride=1)
self.layer5 = self._make_layer(block, 512, layers[4], stride=1)
self.layer1 = self._make_layer(block, 32, layers[0], stride=strides[0])
self.layer2 = self._make_layer(block, 64, layers[1], stride=strides[1])
self.layer3 = self._make_layer(block, 128, layers[2], stride=strides[2])
self.layer4 = self._make_layer(block, 256, layers[3], stride=strides[3])
self.layer5 = self._make_layer(block, 512, layers[4], stride=strides[4])
self.out_channels = 512
# for m in self.modules():
# if isinstance(m, nn.Conv2D):
# n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
# m.weight.data.normal_(0, math.sqrt(2. / n))
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
@ -137,11 +136,9 @@ class ResNet45(nn.Layer):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
# print(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
# print(x)
x = self.layer4(x)
x = self.layer5(x)
return x

View File

@ -140,4 +140,4 @@ class ResNet_ASTER(nn.Layer):
rnn_feat, _ = self.rnn(cnn_feat)
return rnn_feat
else:
return cnn_feat
return cnn_feat

View File

@ -22,13 +22,22 @@ from paddle import nn
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMForTokenClassification, LayoutXLMForRelationExtraction
from paddlenlp.transformers import LayoutLMModel, LayoutLMForTokenClassification
from paddlenlp.transformers import LayoutLMv2Model, LayoutLMv2ForTokenClassification, LayoutLMv2ForRelationExtraction
from paddlenlp.transformers import AutoModel
__all__ = ["LayoutXLMForSer", 'LayoutLMForSer']
__all__ = ["LayoutXLMForSer", "LayoutLMForSer"]
pretrained_model_dict = {
LayoutXLMModel: 'layoutxlm-base-uncased',
LayoutLMModel: 'layoutlm-base-uncased',
LayoutLMv2Model: 'layoutlmv2-base-uncased'
LayoutXLMModel: {
"base": "layoutxlm-base-uncased",
"vi": "layoutxlm-wo-backbone-base-uncased",
},
LayoutLMModel: {
"base": "layoutlm-base-uncased",
},
LayoutLMv2Model: {
"base": "layoutlmv2-base-uncased",
"vi": "layoutlmv2-wo-backbone-base-uncased",
},
}
@ -36,42 +45,47 @@ class NLPBaseModel(nn.Layer):
def __init__(self,
base_model_class,
model_class,
type='ser',
mode="base",
type="ser",
pretrained=True,
checkpoints=None,
**kwargs):
super(NLPBaseModel, self).__init__()
if checkpoints is not None:
if checkpoints is not None: # load the trained model
self.model = model_class.from_pretrained(checkpoints)
elif isinstance(pretrained, (str, )) and os.path.exists(pretrained):
self.model = model_class.from_pretrained(pretrained)
else:
pretrained_model_name = pretrained_model_dict[base_model_class]
else: # load the pretrained-model
pretrained_model_name = pretrained_model_dict[base_model_class][
mode]
if pretrained is True:
base_model = base_model_class.from_pretrained(
pretrained_model_name)
else:
base_model = base_model_class(
**base_model_class.pretrained_init_configuration[
pretrained_model_name])
if type == 'ser':
base_model = base_model_class.from_pretrained(pretrained)
if type == "ser":
self.model = model_class(
base_model, num_classes=kwargs['num_classes'], dropout=None)
base_model, num_classes=kwargs["num_classes"], dropout=None)
else:
self.model = model_class(base_model, dropout=None)
self.out_channels = 1
self.use_visual_backbone = True
class LayoutLMForSer(NLPBaseModel):
def __init__(self, num_classes, pretrained=True, checkpoints=None,
def __init__(self,
num_classes,
pretrained=True,
checkpoints=None,
mode="base",
**kwargs):
super(LayoutLMForSer, self).__init__(
LayoutLMModel,
LayoutLMForTokenClassification,
'ser',
mode,
"ser",
pretrained,
checkpoints,
num_classes=num_classes)
num_classes=num_classes, )
self.use_visual_backbone = False
def forward(self, x):
x = self.model(
@ -85,62 +99,92 @@ class LayoutLMForSer(NLPBaseModel):
class LayoutLMv2ForSer(NLPBaseModel):
def __init__(self, num_classes, pretrained=True, checkpoints=None,
def __init__(self,
num_classes,
pretrained=True,
checkpoints=None,
mode="base",
**kwargs):
super(LayoutLMv2ForSer, self).__init__(
LayoutLMv2Model,
LayoutLMv2ForTokenClassification,
'ser',
mode,
"ser",
pretrained,
checkpoints,
num_classes=num_classes)
self.use_visual_backbone = True
if hasattr(self.model.layoutlmv2, "use_visual_backbone"
) and self.model.layoutlmv2.use_visual_backbone is False:
self.use_visual_backbone = False
def forward(self, x):
if self.use_visual_backbone is True:
image = x[4]
else:
image = None
x = self.model(
input_ids=x[0],
bbox=x[1],
attention_mask=x[2],
token_type_ids=x[3],
image=x[4],
image=image,
position_ids=None,
head_mask=None,
labels=None)
if not self.training:
if self.training:
res = {"backbone_out": x[0]}
res.update(x[1])
return res
else:
return x
return x[0]
class LayoutXLMForSer(NLPBaseModel):
def __init__(self, num_classes, pretrained=True, checkpoints=None,
def __init__(self,
num_classes,
pretrained=True,
checkpoints=None,
mode="base",
**kwargs):
super(LayoutXLMForSer, self).__init__(
LayoutXLMModel,
LayoutXLMForTokenClassification,
'ser',
mode,
"ser",
pretrained,
checkpoints,
num_classes=num_classes)
self.use_visual_backbone = True
def forward(self, x):
if self.use_visual_backbone is True:
image = x[4]
else:
image = None
x = self.model(
input_ids=x[0],
bbox=x[1],
attention_mask=x[2],
token_type_ids=x[3],
image=x[4],
image=image,
position_ids=None,
head_mask=None,
labels=None)
if not self.training:
if self.training:
res = {"backbone_out": x[0]}
res.update(x[1])
return res
else:
return x
return x[0]
class LayoutLMv2ForRe(NLPBaseModel):
def __init__(self, pretrained=True, checkpoints=None, **kwargs):
super(LayoutLMv2ForRe, self).__init__(LayoutLMv2Model,
LayoutLMv2ForRelationExtraction,
're', pretrained, checkpoints)
def __init__(self, pretrained=True, checkpoints=None, mode="base",
**kwargs):
super(LayoutLMv2ForRe, self).__init__(
LayoutLMv2Model, LayoutLMv2ForRelationExtraction, mode, "re",
pretrained, checkpoints)
def forward(self, x):
x = self.model(
@ -158,18 +202,27 @@ class LayoutLMv2ForRe(NLPBaseModel):
class LayoutXLMForRe(NLPBaseModel):
def __init__(self, pretrained=True, checkpoints=None, **kwargs):
super(LayoutXLMForRe, self).__init__(LayoutXLMModel,
LayoutXLMForRelationExtraction,
're', pretrained, checkpoints)
def __init__(self, pretrained=True, checkpoints=None, mode="base",
**kwargs):
super(LayoutXLMForRe, self).__init__(
LayoutXLMModel, LayoutXLMForRelationExtraction, mode, "re",
pretrained, checkpoints)
self.use_visual_backbone = True
if hasattr(self.model.layoutxlm, "use_visual_backbone"
) and self.model.layoutxlm.use_visual_backbone is False:
self.use_visual_backbone = False
def forward(self, x):
if self.use_visual_backbone is True:
image = x[4]
else:
image = None
x = self.model(
input_ids=x[0],
bbox=x[1],
attention_mask=x[2],
token_type_ids=x[3],
image=x[4],
image=image,
position_ids=None,
head_mask=None,
labels=None,

View File

@ -36,6 +36,7 @@ def build_head(config):
from .rec_spin_att_head import SPINAttentionHead
from .rec_abinet_head import ABINetHead
from .rec_robustscanner_head import RobustScannerHead
from .rec_visionlan_head import VLHead
# cls head
from .cls_head import ClsHead
@ -50,7 +51,8 @@ def build_head(config):
'DBHead', 'PSEHead', 'FCEHead', 'EASTHead', 'SASTHead', 'CTCHead',
'ClsHead', 'AttentionHead', 'SRNHead', 'PGHead', 'Transformer',
'TableAttentionHead', 'SARHead', 'AsterHead', 'SDMGRHead', 'PRENHead',
'MultiHead', 'ABINetHead', 'TableMasterHead', 'SPINAttentionHead', 'RobustScannerHead'
'MultiHead', 'ABINetHead', 'TableMasterHead', 'SPINAttentionHead',
'VLHead', 'RobustScannerHead'
]
#table head

View File

@ -0,0 +1,468 @@
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/wangyuxin87/VisionLAN
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import Normal, XavierNormal
import numpy as np
class PositionalEncoding(nn.Layer):
def __init__(self, d_hid, n_position=200):
super(PositionalEncoding, self).__init__()
self.register_buffer(
'pos_table', self._get_sinusoid_encoding_table(n_position, d_hid))
def _get_sinusoid_encoding_table(self, n_position, d_hid):
''' Sinusoid position encoding table '''
def get_position_angle_vec(position):
return [
position / np.power(10000, 2 * (hid_j // 2) / d_hid)
for hid_j in range(d_hid)
]
sinusoid_table = np.array(
[get_position_angle_vec(pos_i) for pos_i in range(n_position)])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
sinusoid_table = paddle.to_tensor(sinusoid_table, dtype='float32')
sinusoid_table = paddle.unsqueeze(sinusoid_table, axis=0)
return sinusoid_table
def forward(self, x):
return x + self.pos_table[:, :x.shape[1]].clone().detach()
class ScaledDotProductAttention(nn.Layer):
"Scaled Dot-Product Attention"
def __init__(self, temperature, attn_dropout=0.1):
super(ScaledDotProductAttention, self).__init__()
self.temperature = temperature
self.dropout = nn.Dropout(attn_dropout)
self.softmax = nn.Softmax(axis=2)
def forward(self, q, k, v, mask=None):
k = paddle.transpose(k, perm=[0, 2, 1])
attn = paddle.bmm(q, k)
attn = attn / self.temperature
if mask is not None:
attn = attn.masked_fill(mask, -1e9)
if mask.dim() == 3:
mask = paddle.unsqueeze(mask, axis=1)
elif mask.dim() == 2:
mask = paddle.unsqueeze(mask, axis=1)
mask = paddle.unsqueeze(mask, axis=1)
repeat_times = [
attn.shape[1] // mask.shape[1], attn.shape[2] // mask.shape[2]
]
mask = paddle.tile(mask, [1, repeat_times[0], repeat_times[1], 1])
attn[mask == 0] = -1e9
attn = self.softmax(attn)
attn = self.dropout(attn)
output = paddle.bmm(attn, v)
return output
class MultiHeadAttention(nn.Layer):
" Multi-Head Attention module"
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
super(MultiHeadAttention, self).__init__()
self.n_head = n_head
self.d_k = d_k
self.d_v = d_v
self.w_qs = nn.Linear(
d_model,
n_head * d_k,
weight_attr=ParamAttr(initializer=Normal(
mean=0, std=np.sqrt(2.0 / (d_model + d_k)))))
self.w_ks = nn.Linear(
d_model,
n_head * d_k,
weight_attr=ParamAttr(initializer=Normal(
mean=0, std=np.sqrt(2.0 / (d_model + d_k)))))
self.w_vs = nn.Linear(
d_model,
n_head * d_v,
weight_attr=ParamAttr(initializer=Normal(
mean=0, std=np.sqrt(2.0 / (d_model + d_v)))))
self.attention = ScaledDotProductAttention(temperature=np.power(d_k,
0.5))
self.layer_norm = nn.LayerNorm(d_model)
self.fc = nn.Linear(
n_head * d_v,
d_model,
weight_attr=ParamAttr(initializer=XavierNormal()))
self.dropout = nn.Dropout(dropout)
def forward(self, q, k, v, mask=None):
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
sz_b, len_q, _ = q.shape
sz_b, len_k, _ = k.shape
sz_b, len_v, _ = v.shape
residual = q
q = self.w_qs(q)
q = paddle.reshape(
q, shape=[-1, len_q, n_head, d_k]) # 4*21*512 ---- 4*21*8*64
k = self.w_ks(k)
k = paddle.reshape(k, shape=[-1, len_k, n_head, d_k])
v = self.w_vs(v)
v = paddle.reshape(v, shape=[-1, len_v, n_head, d_v])
q = paddle.transpose(q, perm=[2, 0, 1, 3])
q = paddle.reshape(q, shape=[-1, len_q, d_k]) # (n*b) x lq x dk
k = paddle.transpose(k, perm=[2, 0, 1, 3])
k = paddle.reshape(k, shape=[-1, len_k, d_k]) # (n*b) x lk x dk
v = paddle.transpose(v, perm=[2, 0, 1, 3])
v = paddle.reshape(v, shape=[-1, len_v, d_v]) # (n*b) x lv x dv
mask = paddle.tile(
mask,
[n_head, 1, 1]) if mask is not None else None # (n*b) x .. x ..
output = self.attention(q, k, v, mask=mask)
output = paddle.reshape(output, shape=[n_head, -1, len_q, d_v])
output = paddle.transpose(output, perm=[1, 2, 0, 3])
output = paddle.reshape(
output, shape=[-1, len_q, n_head * d_v]) # b x lq x (n*dv)
output = self.dropout(self.fc(output))
output = self.layer_norm(output + residual)
return output
class PositionwiseFeedForward(nn.Layer):
def __init__(self, d_in, d_hid, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Conv1D(d_in, d_hid, 1) # position-wise
self.w_2 = nn.Conv1D(d_hid, d_in, 1) # position-wise
self.layer_norm = nn.LayerNorm(d_in)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
residual = x
x = paddle.transpose(x, perm=[0, 2, 1])
x = self.w_2(F.relu(self.w_1(x)))
x = paddle.transpose(x, perm=[0, 2, 1])
x = self.dropout(x)
x = self.layer_norm(x + residual)
return x
class EncoderLayer(nn.Layer):
''' Compose with two layers '''
def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1):
super(EncoderLayer, self).__init__()
self.slf_attn = MultiHeadAttention(
n_head, d_model, d_k, d_v, dropout=dropout)
self.pos_ffn = PositionwiseFeedForward(
d_model, d_inner, dropout=dropout)
def forward(self, enc_input, slf_attn_mask=None):
enc_output = self.slf_attn(
enc_input, enc_input, enc_input, mask=slf_attn_mask)
enc_output = self.pos_ffn(enc_output)
return enc_output
class Transformer_Encoder(nn.Layer):
def __init__(self,
n_layers=2,
n_head=8,
d_word_vec=512,
d_k=64,
d_v=64,
d_model=512,
d_inner=2048,
dropout=0.1,
n_position=256):
super(Transformer_Encoder, self).__init__()
self.position_enc = PositionalEncoding(
d_word_vec, n_position=n_position)
self.dropout = nn.Dropout(p=dropout)
self.layer_stack = nn.LayerList([
EncoderLayer(
d_model, d_inner, n_head, d_k, d_v, dropout=dropout)
for _ in range(n_layers)
])
self.layer_norm = nn.LayerNorm(d_model, epsilon=1e-6)
def forward(self, enc_output, src_mask, return_attns=False):
enc_output = self.dropout(
self.position_enc(enc_output)) # position embeding
for enc_layer in self.layer_stack:
enc_output = enc_layer(enc_output, slf_attn_mask=src_mask)
enc_output = self.layer_norm(enc_output)
return enc_output
class PP_layer(nn.Layer):
def __init__(self, n_dim=512, N_max_character=25, n_position=256):
super(PP_layer, self).__init__()
self.character_len = N_max_character
self.f0_embedding = nn.Embedding(N_max_character, n_dim)
self.w0 = nn.Linear(N_max_character, n_position)
self.wv = nn.Linear(n_dim, n_dim)
self.we = nn.Linear(n_dim, N_max_character)
self.active = nn.Tanh()
self.softmax = nn.Softmax(axis=2)
def forward(self, enc_output):
# enc_output: b,256,512
reading_order = paddle.arange(self.character_len, dtype='int64')
reading_order = reading_order.unsqueeze(0).expand(
[enc_output.shape[0], self.character_len]) # (S,) -> (B, S)
reading_order = self.f0_embedding(reading_order) # b,25,512
# calculate attention
reading_order = paddle.transpose(reading_order, perm=[0, 2, 1])
t = self.w0(reading_order) # b,512,256
t = self.active(
paddle.transpose(
t, perm=[0, 2, 1]) + self.wv(enc_output)) # b,256,512
t = self.we(t) # b,256,25
t = self.softmax(paddle.transpose(t, perm=[0, 2, 1])) # b,25,256
g_output = paddle.bmm(t, enc_output) # b,25,512
return g_output
class Prediction(nn.Layer):
def __init__(self,
n_dim=512,
n_position=256,
N_max_character=25,
n_class=37):
super(Prediction, self).__init__()
self.pp = PP_layer(
n_dim=n_dim, N_max_character=N_max_character, n_position=n_position)
self.pp_share = PP_layer(
n_dim=n_dim, N_max_character=N_max_character, n_position=n_position)
self.w_vrm = nn.Linear(n_dim, n_class) # output layer
self.w_share = nn.Linear(n_dim, n_class) # output layer
self.nclass = n_class
def forward(self, cnn_feature, f_res, f_sub, train_mode=False,
use_mlm=True):
if train_mode:
if not use_mlm:
g_output = self.pp(cnn_feature) # b,25,512
g_output = self.w_vrm(g_output)
f_res = 0
f_sub = 0
return g_output, f_res, f_sub
g_output = self.pp(cnn_feature) # b,25,512
f_res = self.pp_share(f_res)
f_sub = self.pp_share(f_sub)
g_output = self.w_vrm(g_output)
f_res = self.w_share(f_res)
f_sub = self.w_share(f_sub)
return g_output, f_res, f_sub
else:
g_output = self.pp(cnn_feature) # b,25,512
g_output = self.w_vrm(g_output)
return g_output
class MLM(nn.Layer):
"Architecture of MLM"
def __init__(self, n_dim=512, n_position=256, max_text_length=25):
super(MLM, self).__init__()
self.MLM_SequenceModeling_mask = Transformer_Encoder(
n_layers=2, n_position=n_position)
self.MLM_SequenceModeling_WCL = Transformer_Encoder(
n_layers=1, n_position=n_position)
self.pos_embedding = nn.Embedding(max_text_length, n_dim)
self.w0_linear = nn.Linear(1, n_position)
self.wv = nn.Linear(n_dim, n_dim)
self.active = nn.Tanh()
self.we = nn.Linear(n_dim, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x, label_pos):
# transformer unit for generating mask_c
feature_v_seq = self.MLM_SequenceModeling_mask(x, src_mask=None)
# position embedding layer
label_pos = paddle.to_tensor(label_pos, dtype='int64')
pos_emb = self.pos_embedding(label_pos)
pos_emb = self.w0_linear(paddle.unsqueeze(pos_emb, axis=2))
pos_emb = paddle.transpose(pos_emb, perm=[0, 2, 1])
# fusion position embedding with features V & generate mask_c
att_map_sub = self.active(pos_emb + self.wv(feature_v_seq))
att_map_sub = self.we(att_map_sub) # b,256,1
att_map_sub = paddle.transpose(att_map_sub, perm=[0, 2, 1])
att_map_sub = self.sigmoid(att_map_sub) # b,1,256
# WCL
## generate inputs for WCL
att_map_sub = paddle.transpose(att_map_sub, perm=[0, 2, 1])
f_res = x * (1 - att_map_sub) # second path with remaining string
f_sub = x * att_map_sub # first path with occluded character
## transformer units in WCL
f_res = self.MLM_SequenceModeling_WCL(f_res, src_mask=None)
f_sub = self.MLM_SequenceModeling_WCL(f_sub, src_mask=None)
return f_res, f_sub, att_map_sub
def trans_1d_2d(x):
b, w_h, c = x.shape # b, 256, 512
x = paddle.transpose(x, perm=[0, 2, 1])
x = paddle.reshape(x, [-1, c, 32, 8])
x = paddle.transpose(x, perm=[0, 1, 3, 2]) # [b, c, 8, 32]
return x
class MLM_VRM(nn.Layer):
"""
MLM+VRM, MLM is only used in training.
ratio controls the occluded number in a batch.
The pipeline of VisionLAN in testing is very concise with only a backbone + sequence modeling(transformer unit) + prediction layer(pp layer).
x: input image
label_pos: character index
training_step: LF or LA process
output
text_pre: prediction of VRM
test_rem: prediction of remaining string in MLM
text_mas: prediction of occluded character in MLM
mask_c_show: visualization of Mask_c
"""
def __init__(self,
n_layers=3,
n_position=256,
n_dim=512,
max_text_length=25,
nclass=37):
super(MLM_VRM, self).__init__()
self.MLM = MLM(n_dim=n_dim,
n_position=n_position,
max_text_length=max_text_length)
self.SequenceModeling = Transformer_Encoder(
n_layers=n_layers, n_position=n_position)
self.Prediction = Prediction(
n_dim=n_dim,
n_position=n_position,
N_max_character=max_text_length +
1, # N_max_character = 1 eos + 25 characters
n_class=nclass)
self.nclass = nclass
self.max_text_length = max_text_length
def forward(self, x, label_pos, training_step, train_mode=False):
b, c, h, w = x.shape
nT = self.max_text_length
x = paddle.transpose(x, perm=[0, 1, 3, 2])
x = paddle.reshape(x, [-1, c, h * w])
x = paddle.transpose(x, perm=[0, 2, 1])
if train_mode:
if training_step == 'LF_1':
f_res = 0
f_sub = 0
x = self.SequenceModeling(x, src_mask=None)
text_pre, test_rem, text_mas = self.Prediction(
x, f_res, f_sub, train_mode=True, use_mlm=False)
return text_pre, text_pre, text_pre, text_pre
elif training_step == 'LF_2':
# MLM
f_res, f_sub, mask_c = self.MLM(x, label_pos)
x = self.SequenceModeling(x, src_mask=None)
text_pre, test_rem, text_mas = self.Prediction(
x, f_res, f_sub, train_mode=True)
mask_c_show = trans_1d_2d(mask_c)
return text_pre, test_rem, text_mas, mask_c_show
elif training_step == 'LA':
# MLM
f_res, f_sub, mask_c = self.MLM(x, label_pos)
## use the mask_c (1 for occluded character and 0 for remaining characters) to occlude input
## ratio controls the occluded number in a batch
character_mask = paddle.zeros_like(mask_c)
ratio = b // 2
if ratio >= 1:
with paddle.no_grad():
character_mask[0:ratio, :, :] = mask_c[0:ratio, :, :]
else:
character_mask = mask_c
x = x * (1 - character_mask)
# VRM
## transformer unit for VRM
x = self.SequenceModeling(x, src_mask=None)
## prediction layer for MLM and VSR
text_pre, test_rem, text_mas = self.Prediction(
x, f_res, f_sub, train_mode=True)
mask_c_show = trans_1d_2d(mask_c)
return text_pre, test_rem, text_mas, mask_c_show
else:
raise NotImplementedError
else: # VRM is only used in the testing stage
f_res = 0
f_sub = 0
contextual_feature = self.SequenceModeling(x, src_mask=None)
text_pre = self.Prediction(
contextual_feature,
f_res,
f_sub,
train_mode=False,
use_mlm=False)
text_pre = paddle.transpose(
text_pre, perm=[1, 0, 2]) # (26, b, 37))
return text_pre, x
class VLHead(nn.Layer):
"""
Architecture of VisionLAN
"""
def __init__(self,
in_channels,
out_channels=36,
n_layers=3,
n_position=256,
n_dim=512,
max_text_length=25,
training_step='LA'):
super(VLHead, self).__init__()
self.MLM_VRM = MLM_VRM(
n_layers=n_layers,
n_position=n_position,
n_dim=n_dim,
max_text_length=max_text_length,
nclass=out_channels + 1)
self.training_step = training_step
def forward(self, feat, targets=None):
if self.training:
label_pos = targets[-2]
text_pre, test_rem, text_mas, mask_map = self.MLM_VRM(
feat, label_pos, self.training_step, train_mode=True)
return text_pre, test_rem, text_mas, mask_map
else:
text_pre, x = self.MLM_VRM(
feat, targets, self.training_step, train_mode=False)
return text_pre, x

View File

@ -77,11 +77,62 @@ class Adam(object):
self.grad_clip = grad_clip
self.name = name
self.lazy_mode = lazy_mode
self.group_lr = kwargs.get('group_lr', False)
self.training_step = kwargs.get('training_step', None)
def __call__(self, model):
train_params = [
param for param in model.parameters() if param.trainable is True
]
if self.group_lr:
if self.training_step == 'LF_2':
import paddle
if isinstance(model, paddle.fluid.dygraph.parallel.
DataParallel): # multi gpu
mlm = model._layers.head.MLM_VRM.MLM.parameters()
pre_mlm_pp = model._layers.head.MLM_VRM.Prediction.pp_share.parameters(
)
pre_mlm_w = model._layers.head.MLM_VRM.Prediction.w_share.parameters(
)
else: # single gpu
mlm = model.head.MLM_VRM.MLM.parameters()
pre_mlm_pp = model.head.MLM_VRM.Prediction.pp_share.parameters(
)
pre_mlm_w = model.head.MLM_VRM.Prediction.w_share.parameters(
)
total = []
for param in mlm:
total.append(id(param))
for param in pre_mlm_pp:
total.append(id(param))
for param in pre_mlm_w:
total.append(id(param))
group_base_params = [
param for param in model.parameters() if id(param) in total
]
group_small_params = [
param for param in model.parameters()
if id(param) not in total
]
train_params = [{
'params': group_base_params
}, {
'params': group_small_params,
'learning_rate': self.learning_rate.values[0] * 0.1
}]
else:
print(
'group lr currently only support VisionLAN in LF_2 training step'
)
train_params = [
param for param in model.parameters()
if param.trainable is True
]
else:
train_params = [
param for param in model.parameters() if param.trainable is True
]
opt = optim.Adam(
learning_rate=self.learning_rate,
beta1=self.beta1,

View File

@ -28,12 +28,13 @@ from .fce_postprocess import FCEPostProcess
from .rec_postprocess import CTCLabelDecode, AttnLabelDecode, SRNLabelDecode, \
DistillationCTCLabelDecode, NRTRLabelDecode, SARLabelDecode, \
SEEDLabelDecode, PRENLabelDecode, ViTSTRLabelDecode, ABINetLabelDecode, \
SPINLabelDecode
SPINLabelDecode, VLLabelDecode
from .cls_postprocess import ClsPostProcess
from .pg_postprocess import PGPostProcess
from .vqa_token_ser_layoutlm_postprocess import VQASerTokenLayoutLMPostProcess
from .vqa_token_re_layoutlm_postprocess import VQAReTokenLayoutLMPostProcess
from .vqa_token_ser_layoutlm_postprocess import VQASerTokenLayoutLMPostProcess, DistillationSerPostProcess
from .vqa_token_re_layoutlm_postprocess import VQAReTokenLayoutLMPostProcess, DistillationRePostProcess
from .table_postprocess import TableMasterLabelDecode, TableLabelDecode
from .picodet_postprocess import PicoDetPostProcess
def build_post_process(config, global_config=None):
@ -45,7 +46,9 @@ def build_post_process(config, global_config=None):
'SEEDLabelDecode', 'VQASerTokenLayoutLMPostProcess',
'VQAReTokenLayoutLMPostProcess', 'PRENLabelDecode',
'DistillationSARLabelDecode', 'ViTSTRLabelDecode', 'ABINetLabelDecode',
'TableMasterLabelDecode', 'SPINLabelDecode'
'TableMasterLabelDecode', 'SPINLabelDecode',
'DistillationSerPostProcess', 'DistillationRePostProcess',
'VLLabelDecode', 'PicoDetPostProcess'
]
if config['name'] == 'PSEPostProcess':

View File

@ -0,0 +1,250 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from scipy.special import softmax
def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200):
"""
Args:
box_scores (N, 5): boxes in corner-form and probabilities.
iou_threshold: intersection over union threshold.
top_k: keep top_k results. If k <= 0, keep all the results.
candidate_size: only consider the candidates with the highest scores.
Returns:
picked: a list of indexes of the kept boxes
"""
scores = box_scores[:, -1]
boxes = box_scores[:, :-1]
picked = []
indexes = np.argsort(scores)
indexes = indexes[-candidate_size:]
while len(indexes) > 0:
current = indexes[-1]
picked.append(current)
if 0 < top_k == len(picked) or len(indexes) == 1:
break
current_box = boxes[current, :]
indexes = indexes[:-1]
rest_boxes = boxes[indexes, :]
iou = iou_of(
rest_boxes,
np.expand_dims(
current_box, axis=0), )
indexes = indexes[iou <= iou_threshold]
return box_scores[picked, :]
def iou_of(boxes0, boxes1, eps=1e-5):
"""Return intersection-over-union (Jaccard index) of boxes.
Args:
boxes0 (N, 4): ground truth boxes.
boxes1 (N or 1, 4): predicted boxes.
eps: a small number to avoid 0 as denominator.
Returns:
iou (N): IoU values.
"""
overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2])
overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:])
overlap_area = area_of(overlap_left_top, overlap_right_bottom)
area0 = area_of(boxes0[..., :2], boxes0[..., 2:])
area1 = area_of(boxes1[..., :2], boxes1[..., 2:])
return overlap_area / (area0 + area1 - overlap_area + eps)
def area_of(left_top, right_bottom):
"""Compute the areas of rectangles given two corners.
Args:
left_top (N, 2): left top corner.
right_bottom (N, 2): right bottom corner.
Returns:
area (N): return the area.
"""
hw = np.clip(right_bottom - left_top, 0.0, None)
return hw[..., 0] * hw[..., 1]
class PicoDetPostProcess(object):
"""
Args:
input_shape (int): network input image size
ori_shape (int): ori image shape of before padding
scale_factor (float): scale factor of ori image
enable_mkldnn (bool): whether to open MKLDNN
"""
def __init__(self,
layout_dict_path,
strides=[8, 16, 32, 64],
score_threshold=0.4,
nms_threshold=0.5,
nms_top_k=1000,
keep_top_k=100):
self.labels = self.load_layout_dict(layout_dict_path)
self.strides = strides
self.score_threshold = score_threshold
self.nms_threshold = nms_threshold
self.nms_top_k = nms_top_k
self.keep_top_k = keep_top_k
def load_layout_dict(self, layout_dict_path):
with open(layout_dict_path, 'r', encoding='utf-8') as fp:
labels = fp.readlines()
return [label.strip('\n') for label in labels]
def warp_boxes(self, boxes, ori_shape):
"""Apply transform to boxes
"""
width, height = ori_shape[1], ori_shape[0]
n = len(boxes)
if n:
# warp points
xy = np.ones((n * 4, 3))
xy[:, :2] = boxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(
n * 4, 2) # x1y1, x2y2, x1y2, x2y1
# xy = xy @ M.T # transform
xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale
# create new boxes
x = xy[:, [0, 2, 4, 6]]
y = xy[:, [1, 3, 5, 7]]
xy = np.concatenate(
(x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
# clip boxes
xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
return xy.astype(np.float32)
else:
return boxes
def img_info(self, ori_img, img):
origin_shape = ori_img.shape
resize_shape = img.shape
im_scale_y = resize_shape[2] / float(origin_shape[0])
im_scale_x = resize_shape[3] / float(origin_shape[1])
scale_factor = np.array([im_scale_y, im_scale_x], dtype=np.float32)
img_shape = np.array(img.shape[2:], dtype=np.float32)
input_shape = np.array(img).astype('float32').shape[2:]
ori_shape = np.array((img_shape, )).astype('float32')
scale_factor = np.array((scale_factor, )).astype('float32')
return ori_shape, input_shape, scale_factor
def __call__(self, ori_img, img, preds):
scores, raw_boxes = preds['boxes'], preds['boxes_num']
batch_size = raw_boxes[0].shape[0]
reg_max = int(raw_boxes[0].shape[-1] / 4 - 1)
out_boxes_num = []
out_boxes_list = []
results = []
ori_shape, input_shape, scale_factor = self.img_info(ori_img, img)
for batch_id in range(batch_size):
# generate centers
decode_boxes = []
select_scores = []
for stride, box_distribute, score in zip(self.strides, raw_boxes,
scores):
box_distribute = box_distribute[batch_id]
score = score[batch_id]
# centers
fm_h = input_shape[0] / stride
fm_w = input_shape[1] / stride
h_range = np.arange(fm_h)
w_range = np.arange(fm_w)
ww, hh = np.meshgrid(w_range, h_range)
ct_row = (hh.flatten() + 0.5) * stride
ct_col = (ww.flatten() + 0.5) * stride
center = np.stack((ct_col, ct_row, ct_col, ct_row), axis=1)
# box distribution to distance
reg_range = np.arange(reg_max + 1)
box_distance = box_distribute.reshape((-1, reg_max + 1))
box_distance = softmax(box_distance, axis=1)
box_distance = box_distance * np.expand_dims(reg_range, axis=0)
box_distance = np.sum(box_distance, axis=1).reshape((-1, 4))
box_distance = box_distance * stride
# top K candidate
topk_idx = np.argsort(score.max(axis=1))[::-1]
topk_idx = topk_idx[:self.nms_top_k]
center = center[topk_idx]
score = score[topk_idx]
box_distance = box_distance[topk_idx]
# decode box
decode_box = center + [-1, -1, 1, 1] * box_distance
select_scores.append(score)
decode_boxes.append(decode_box)
# nms
bboxes = np.concatenate(decode_boxes, axis=0)
confidences = np.concatenate(select_scores, axis=0)
picked_box_probs = []
picked_labels = []
for class_index in range(0, confidences.shape[1]):
probs = confidences[:, class_index]
mask = probs > self.score_threshold
probs = probs[mask]
if probs.shape[0] == 0:
continue
subset_boxes = bboxes[mask, :]
box_probs = np.concatenate(
[subset_boxes, probs.reshape(-1, 1)], axis=1)
box_probs = hard_nms(
box_probs,
iou_threshold=self.nms_threshold,
top_k=self.keep_top_k, )
picked_box_probs.append(box_probs)
picked_labels.extend([class_index] * box_probs.shape[0])
if len(picked_box_probs) == 0:
out_boxes_list.append(np.empty((0, 4)))
out_boxes_num.append(0)
else:
picked_box_probs = np.concatenate(picked_box_probs)
# resize output boxes
picked_box_probs[:, :4] = self.warp_boxes(
picked_box_probs[:, :4], ori_shape[batch_id])
im_scale = np.concatenate([
scale_factor[batch_id][::-1], scale_factor[batch_id][::-1]
])
picked_box_probs[:, :4] /= im_scale
# clas score box
out_boxes_list.append(
np.concatenate(
[
np.expand_dims(
np.array(picked_labels),
axis=-1), np.expand_dims(
picked_box_probs[:, 4], axis=-1),
picked_box_probs[:, :4]
],
axis=1))
out_boxes_num.append(len(picked_labels))
out_boxes_list = np.concatenate(out_boxes_list, axis=0)
out_boxes_num = np.asarray(out_boxes_num).astype(np.int32)
for dt in out_boxes_list:
clsid, bbox, score = int(dt[0]), dt[2:], dt[1]
label = self.labels[clsid]
result = {'bbox': bbox, 'label': label}
results.append(result)
return results

View File

@ -668,6 +668,7 @@ class ABINetLabelDecode(NRTRLabelDecode):
dict_character = ['</s>'] + dict_character
return dict_character
class SPINLabelDecode(AttnLabelDecode):
""" Convert between text-label and text-index """
@ -681,4 +682,106 @@ class SPINLabelDecode(AttnLabelDecode):
self.end_str = "eos"
dict_character = dict_character
dict_character = [self.beg_str] + [self.end_str] + dict_character
return dict_character
return dict_character
class VLLabelDecode(BaseRecLabelDecode):
""" Convert between text-label and text-index """
def __init__(self, character_dict_path=None, use_space_char=False,
**kwargs):
super(VLLabelDecode, self).__init__(character_dict_path, use_space_char)
self.max_text_length = kwargs.get('max_text_length', 25)
self.nclass = len(self.character) + 1
self.character = self.character[10:] + self.character[
1:10] + [self.character[0]]
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
""" convert text-index into text-label. """
result_list = []
ignored_tokens = self.get_ignored_tokens()
batch_size = len(text_index)
for batch_idx in range(batch_size):
selection = np.ones(len(text_index[batch_idx]), dtype=bool)
if is_remove_duplicate:
selection[1:] = text_index[batch_idx][1:] != text_index[
batch_idx][:-1]
for ignored_token in ignored_tokens:
selection &= text_index[batch_idx] != ignored_token
char_list = [
self.character[text_id - 1]
for text_id in text_index[batch_idx][selection]
]
if text_prob is not None:
conf_list = text_prob[batch_idx][selection]
else:
conf_list = [1] * len(selection)
if len(conf_list) == 0:
conf_list = [0]
text = ''.join(char_list)
result_list.append((text, np.mean(conf_list).tolist()))
return result_list
def __call__(self, preds, label=None, length=None, *args, **kwargs):
if len(preds) == 2: # eval mode
text_pre, x = preds
b = text_pre.shape[1]
lenText = self.max_text_length
nsteps = self.max_text_length
if not isinstance(text_pre, paddle.Tensor):
text_pre = paddle.to_tensor(text_pre, dtype='float32')
out_res = paddle.zeros(
shape=[lenText, b, self.nclass], dtype=x.dtype)
out_length = paddle.zeros(shape=[b], dtype=x.dtype)
now_step = 0
for _ in range(nsteps):
if 0 in out_length and now_step < nsteps:
tmp_result = text_pre[now_step, :, :]
out_res[now_step] = tmp_result
tmp_result = tmp_result.topk(1)[1].squeeze(axis=1)
for j in range(b):
if out_length[j] == 0 and tmp_result[j] == 0:
out_length[j] = now_step + 1
now_step += 1
for j in range(0, b):
if int(out_length[j]) == 0:
out_length[j] = nsteps
start = 0
output = paddle.zeros(
shape=[int(out_length.sum()), self.nclass], dtype=x.dtype)
for i in range(0, b):
cur_length = int(out_length[i])
output[start:start + cur_length] = out_res[0:cur_length, i, :]
start += cur_length
net_out = output
length = out_length
else: # train mode
net_out = preds[0]
length = length
net_out = paddle.concat([t[:l] for t, l in zip(net_out, length)])
text = []
if not isinstance(net_out, paddle.Tensor):
net_out = paddle.to_tensor(net_out, dtype='float32')
net_out = F.softmax(net_out, axis=1)
for i in range(0, length.shape[0]):
preds_idx = net_out[int(length[:i].sum()):int(length[:i].sum(
) + length[i])].topk(1)[1][:, 0].tolist()
preds_text = ''.join([
self.character[idx - 1]
if idx > 0 and idx <= len(self.character) else ''
for idx in preds_idx
])
preds_prob = net_out[int(length[:i].sum()):int(length[:i].sum(
) + length[i])].topk(1)[0][:, 0]
preds_prob = paddle.exp(
paddle.log(preds_prob).sum() / (preds_prob.shape[0] + 1e-6))
text.append((preds_text, preds_prob))
if label is None:
return text
label = self.decode(label)
return text, label

View File

@ -49,3 +49,25 @@ class VQAReTokenLayoutLMPostProcess(object):
result.append((ocr_info_head, ocr_info_tail))
results.append(result)
return results
class DistillationRePostProcess(VQAReTokenLayoutLMPostProcess):
"""
DistillationRePostProcess
"""
def __init__(self, model_name=["Student"], key=None, **kwargs):
super().__init__(**kwargs)
if not isinstance(model_name, list):
model_name = [model_name]
self.model_name = model_name
self.key = key
def __call__(self, preds, *args, **kwargs):
output = dict()
for name in self.model_name:
pred = preds[name]
if self.key is not None:
pred = pred[self.key]
output[name] = super().__call__(pred, *args, **kwargs)
return output

View File

@ -93,3 +93,25 @@ class VQASerTokenLayoutLMPostProcess(object):
ocr_info[idx]["pred"] = self.id2label_map_for_show[int(pred_id)]
results.append(ocr_info)
return results
class DistillationSerPostProcess(VQASerTokenLayoutLMPostProcess):
"""
DistillationSerPostProcess
"""
def __init__(self, class_path, model_name=["Student"], key=None, **kwargs):
super().__init__(class_path, **kwargs)
if not isinstance(model_name, list):
model_name = [model_name]
self.model_name = model_name
self.key = key
def __call__(self, preds, batch=None, *args, **kwargs):
output = dict()
for name in self.model_name:
pred = preds[name]
if self.key is not None:
pred = pred[self.key]
output[name] = super().__call__(pred, batch=batch, *args, **kwargs)
return output

View File

@ -53,8 +53,12 @@ def load_model(config, model, optimizer=None, model_type='det'):
checkpoints = global_config.get('checkpoints')
pretrained_model = global_config.get('pretrained_model')
best_model_dict = {}
is_float16 = False
if model_type == 'vqa':
# NOTE: for vqa model, resume training is not supported now
if config["Architecture"]["algorithm"] in ["Distillation"]:
return best_model_dict
checkpoints = config['Architecture']['Backbone']['checkpoints']
# load vqa method metric
if checkpoints:
@ -78,6 +82,7 @@ def load_model(config, model, optimizer=None, model_type='det'):
logger.warning(
"{}.pdopt is not exists, params of optimizer is not loaded".
format(checkpoints))
return best_model_dict
if checkpoints:
@ -96,6 +101,9 @@ def load_model(config, model, optimizer=None, model_type='det'):
key, params.keys()))
continue
pre_value = params[key]
if pre_value.dtype == paddle.float16:
pre_value = pre_value.astype(paddle.float32)
is_float16 = True
if list(value.shape) == list(pre_value.shape):
new_state_dict[key] = pre_value
else:
@ -103,7 +111,10 @@ def load_model(config, model, optimizer=None, model_type='det'):
"The shape of model params {} {} not matched with loaded params shape {} !".
format(key, value.shape, pre_value.shape))
model.set_state_dict(new_state_dict)
if is_float16:
logger.info(
"The parameter type is float16, which is converted to float32 when loading"
)
if optimizer is not None:
if os.path.exists(checkpoints + '.pdopt'):
optim_dict = paddle.load(checkpoints + '.pdopt')
@ -122,9 +133,10 @@ def load_model(config, model, optimizer=None, model_type='det'):
best_model_dict['start_epoch'] = states_dict['epoch'] + 1
logger.info("resume from {}".format(checkpoints))
elif pretrained_model:
load_pretrained_params(model, pretrained_model)
is_float16 = load_pretrained_params(model, pretrained_model)
else:
logger.info('train from scratch')
best_model_dict['is_float16'] = is_float16
return best_model_dict
@ -138,19 +150,28 @@ def load_pretrained_params(model, path):
params = paddle.load(path + '.pdparams')
state_dict = model.state_dict()
new_state_dict = {}
is_float16 = False
for k1 in params.keys():
if k1 not in state_dict.keys():
logger.warning("The pretrained params {} not in model".format(k1))
else:
if params[k1].dtype == paddle.float16:
params[k1] = params[k1].astype(paddle.float32)
is_float16 = True
if list(state_dict[k1].shape) == list(params[k1].shape):
new_state_dict[k1] = params[k1]
else:
logger.warning(
"The shape of model params {} {} not matched with loaded params {} {} !".
format(k1, state_dict[k1].shape, k1, params[k1].shape))
model.set_state_dict(new_state_dict)
if is_float16:
logger.info(
"The parameter type is float16, which is converted to float32 when loading"
)
logger.info("load pretrain successful from {}".format(path))
return model
return is_float16
def save_model(model,
@ -166,15 +187,19 @@ def save_model(model,
"""
_mkdir_if_not_exist(model_path, logger)
model_prefix = os.path.join(model_path, prefix)
paddle.save(optimizer.state_dict(), model_prefix + '.pdopt')
if config['Architecture']["model_type"] != 'vqa':
paddle.save(optimizer.state_dict(), model_prefix + '.pdopt')
if config['Architecture']["model_type"] != 'vqa':
paddle.save(model.state_dict(), model_prefix + '.pdparams')
metric_prefix = model_prefix
else:
else: # for vqa system, we follow the save/load rules in NLP
if config['Global']['distributed']:
model._layers.backbone.model.save_pretrained(model_prefix)
arch = model._layers
else:
model.backbone.model.save_pretrained(model_prefix)
arch = model
if config["Architecture"]["algorithm"] in ["Distillation"]:
arch = arch.Student
arch.backbone.model.save_pretrained(model_prefix)
metric_prefix = os.path.join(model_prefix, 'metric')
# save metric and config
with open(metric_prefix + '.states', 'wb') as f:

View File

@ -0,0 +1,130 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2
import numpy as np
import time
import tools.infer.utility as utility
from ppocr.data import create_operators, transform
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppstructure.utility import parse_args
from picodet_postprocess import PicoDetPostProcess
logger = get_logger()
class LayoutPredictor(object):
def __init__(self, args):
pre_process_list = [{
'Resize': {
'size': [800, 608]
}
}, {
'NormalizeImage': {
'std': [0.229, 0.224, 0.225],
'mean': [0.485, 0.456, 0.406],
'scale': '1./255.',
'order': 'hwc'
}
}, {
'ToCHWImage': None
}, {
'KeepKeys': {
'keep_keys': ['image']
}
}]
postprocess_params = {
'name': 'PicoDetPostProcess',
"layout_dict_path": args.layout_dict_path,
"score_threshold": args.layout_score_threshold,
"nms_threshold": args.layout_nms_threshold,
}
self.preprocess_op = create_operators(pre_process_list)
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.output_tensors, self.config = \
utility.create_predictor(args, 'layout', logger)
def __call__(self, img):
ori_im = img.copy()
data = {'image': img}
data = transform(data, self.preprocess_op)
img = data[0]
if img is None:
return None, 0
img = np.expand_dims(img, axis=0)
img = img.copy()
preds, elapse = 0, 1
starttime = time.time()
self.input_tensor.copy_from_cpu(img)
self.predictor.run()
np_score_list, np_boxes_list = [], []
output_names = self.predictor.get_output_names()
num_outs = int(len(output_names) / 2)
for out_idx in range(num_outs):
np_score_list.append(
self.predictor.get_output_handle(output_names[out_idx])
.copy_to_cpu())
np_boxes_list.append(
self.predictor.get_output_handle(output_names[
out_idx + num_outs]).copy_to_cpu())
preds = dict(boxes=np_score_list, boxes_num=np_boxes_list)
post_preds = self.postprocess_op(ori_im, img, preds)
elapse = time.time() - starttime
return post_preds, elapse
def main(args):
image_file_list = get_image_file_list(args.image_dir)
layout_predictor = LayoutPredictor(args)
count = 0
total_time = 0
repeats = 50
for image_file in image_file_list:
img, flag = check_and_read_gif(image_file)
if not flag:
img = cv2.imread(image_file)
if img is None:
logger.info("error in loading image:{}".format(image_file))
continue
layout_res, elapse = layout_predictor(img)
logger.info("result: {}".format(layout_res))
if count > 0:
total_time += elapse
count += 1
logger.info("Predict time of {}: {}".format(image_file, elapse))
if __name__ == "__main__":
main(parse_args())

View File

@ -32,15 +32,18 @@ def init_args():
type=str,
default="../ppocr/utils/dict/table_structure_dict.txt")
# params for layout
parser.add_argument("--layout_model_dir", type=str)
parser.add_argument(
"--layout_path_model",
"--layout_dict_path",
type=str,
default="lp://PubLayNet/ppyolov2_r50vd_dcn_365e_publaynet/config")
default="../ppocr/utils/dict/layout_pubalynet_dict.txt")
parser.add_argument(
"--layout_label_map",
type=ast.literal_eval,
default=None,
help='label map according to ppstructure/layout/README_ch.md')
"--layout_score_threshold",
type=float,
default=0.5,
help="Threshold of score.")
parser.add_argument(
"--layout_nms_threshold", type=float, default=0.5, help="Threshold of nms.")
# params for vqa
parser.add_argument("--vqa_algorithm", type=str, default='LayoutXLM')
parser.add_argument("--ser_model_dir", type=str)
@ -87,7 +90,7 @@ def draw_structure_result(image, result, font_path):
image = Image.fromarray(image)
boxes, txts, scores = [], [], []
for region in result:
if region['type'] == 'Table':
if region['type'] == 'table':
pass
else:
for text_result in region['res']:

View File

@ -216,7 +216,7 @@ Use the following command to complete the tandem prediction of `OCR + SER` based
```shell
cd ppstructure
CUDA_VISIBLE_DEVICES=0 python3.7 vqa/predict_vqa_token_ser.py --vqa_algorithm=LayoutXLM --ser_model_dir=../output/ser/infer --ser_dict_path=../train_data/XFUND/class_list_xfun.txt --image_dir=docs/vqa/input/zh_val_42.jpg --output=output
CUDA_VISIBLE_DEVICES=0 python3.7 vqa/predict_vqa_token_ser.py --vqa_algorithm=LayoutXLM --ser_model_dir=../output/ser/infer --ser_dict_path=../train_data/XFUND/class_list_xfun.txt --vis_font_path=../doc/fonts/simfang.ttf --image_dir=docs/vqa/input/zh_val_42.jpg --output=output
```
After the prediction is successful, the visualization images and results will be saved in the directory specified by the `output` field

View File

@ -215,7 +215,7 @@ python3.7 tools/export_model.py -c configs/vqa/ser/layoutxlm.yml -o Architecture
```shell
cd ppstructure
CUDA_VISIBLE_DEVICES=0 python3.7 vqa/predict_vqa_token_ser.py --vqa_algorithm=LayoutXLM --ser_model_dir=../output/ser/infer --ser_dict_path=../train_data/XFUND/class_list_xfun.txt --image_dir=docs/vqa/input/zh_val_42.jpg --output=output
CUDA_VISIBLE_DEVICES=0 python3.7 vqa/predict_vqa_token_ser.py --vqa_algorithm=LayoutXLM --ser_model_dir=../output/ser/infer --ser_dict_path=../train_data/XFUND/class_list_xfun.txt --vis_font_path=../doc/fonts/simfang.ttf --image_dir=docs/vqa/input/zh_val_42.jpg --output=output
```
预测成功后,可视化图片和结果会保存在`output`字段指定的目录下

View File

@ -153,7 +153,7 @@ def main(args):
img_res = draw_ser_results(
image_file,
ser_res,
font_path="../doc/fonts/simfang.ttf", )
font_path=args.vis_font_path, )
img_save_path = os.path.join(args.output,
os.path.basename(image_file))

View File

@ -114,7 +114,7 @@ Train:
name: SimpleDataSet
data_dir: ./train_data/ic15_data/
label_file_list:
- ./train_data/ic15_data/rec_gt_train4w.txt
- ./train_data/ic15_data/rec_gt_train.txt
transforms:
- DecodeImage:
img_mode: BGR

View File

@ -153,7 +153,7 @@ Train:
data_dir: ./train_data/ic15_data/
ext_op_transform_idx: 1
label_file_list:
- ./train_data/ic15_data/rec_gt_train4w.txt
- ./train_data/ic15_data/rec_gt_train.txt
transforms:
- DecodeImage:
img_mode: BGR

View File

@ -52,8 +52,9 @@ null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,48,320]}]
===========================train_benchmark_params==========================
batch_size:128
batch_size:64
fp_items:fp32|fp16
epoch:1
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096

View File

@ -1,5 +1,5 @@
===========================cpp_infer_params===========================
model_name:ch_ppocr_mobile_v2.0
model_name:ch_ppocr_mobile_v2_0
use_opencv:True
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
infer_quant:False

View File

@ -1,5 +1,5 @@
===========================ch_ppocr_mobile_v2.0===========================
model_name:ch_ppocr_mobile_v2.0
model_name:ch_ppocr_mobile_v2_0
python:python3.7
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
infer_export:null

View File

@ -1,5 +1,5 @@
===========================paddle2onnx_params===========================
model_name:ch_ppocr_mobile_v2.0
model_name:ch_ppocr_mobile_v2_0
python:python3.7
2onnx: paddle2onnx
--det_model_dir:./inference/ch_ppocr_mobile_v2.0_det_infer/

View File

@ -1,5 +1,5 @@
===========================serving_params===========================
model_name:ch_ppocr_mobile_v2.0
model_name:ch_ppocr_mobile_v2_0
python:python3.7
trans_model:-m paddle_serving_client.convert
--det_dirname:./inference/ch_ppocr_mobile_v2.0_det_infer/

View File

@ -1,5 +1,5 @@
===========================serving_params===========================
model_name:ch_ppocr_mobile_v2.0
model_name:ch_ppocr_mobile_v2_0
python:python3.7
trans_model:-m paddle_serving_client.convert
--det_dirname:./inference/ch_ppocr_mobile_v2.0_det_infer/

View File

@ -1,5 +1,5 @@
===========================cpp_infer_params===========================
model_name:ch_ppocr_mobile_v2.0_det
model_name:ch_ppocr_mobile_v2_0_det
use_opencv:True
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
infer_quant:False

View File

@ -1,5 +1,5 @@
===========================infer_params===========================
model_name:ch_ppocr_mobile_v2.0_det
model_name:ch_ppocr_mobile_v2_0_det
python:python
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer
infer_export:null

View File

@ -1,5 +1,5 @@
===========================paddle2onnx_params===========================
model_name:ch_ppocr_mobile_v2.0_det
model_name:ch_ppocr_mobile_v2_0_det
python:python3.7
2onnx: paddle2onnx
--det_model_dir:./inference/ch_ppocr_mobile_v2.0_det_infer/

View File

@ -1,5 +1,5 @@
===========================serving_params===========================
model_name:ch_ppocr_mobile_v2.0_det
model_name:ch_ppocr_mobile_v2_0_det
python:python3.7
trans_model:-m paddle_serving_client.convert
--det_dirname:./inference/ch_ppocr_mobile_v2.0_det_infer/

View File

@ -1,5 +1,5 @@
===========================train_params===========================
model_name:ch_ppocr_mobile_v2.0_det
model_name:ch_ppocr_mobile_v2_0_det
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True

View File

@ -1,5 +1,5 @@
===========================train_params===========================
model_name:ch_ppocr_mobile_v2.0_det
model_name:ch_ppocr_mobile_v2_0_det
python:python3.7
gpu_list:192.168.0.1,192.168.0.2;0,1
Global.use_gpu:True

View File

@ -1,5 +1,5 @@
===========================train_params===========================
model_name:ch_ppocr_mobile_v2.0_det
model_name:ch_ppocr_mobile_v2_0_det
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True

View File

@ -1,5 +1,5 @@
===========================train_params===========================
model_name:ch_ppocr_mobile_v2.0_det_PACT
model_name:ch_ppocr_mobile_v2_0_det_PACT
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True

View File

@ -1,5 +1,5 @@
===========================kl_quant_params===========================
model_name:ch_ppocr_mobile_v2.0_det_KL
model_name:ch_ppocr_mobile_v2_0_det_KL
python:python3.7
Global.pretrained_model:null
Global.save_inference_dir:null

View File

@ -1,5 +1,5 @@
===========================train_params===========================
model_name:ch_ppocr_mobile_v2.0_det_FPGM
model_name:ch_ppocr_mobile_v2_0_det_FPGM
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True

View File

@ -1,5 +1,5 @@
===========================train_params===========================
model_name:ch_ppocr_mobile_v2.0_det_FPGM
model_name:ch_ppocr_mobile_v2_0_det_FPGM
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True

View File

@ -1,5 +1,5 @@
===========================cpp_infer_params===========================
model_name:ch_ppocr_mobile_v2.0_det_KL
model_name:ch_ppocr_mobile_v2_0_det_KL
use_opencv:True
infer_model:./inference/ch_ppocr_mobile_v2.0_det_klquant_infer
infer_quant:False

View File

@ -1,5 +1,5 @@
===========================serving_params===========================
model_name:ch_ppocr_mobile_v2.0_rec_KL
model_name:ch_ppocr_mobile_v2_0_det_KL
python:python3.7
trans_model:-m paddle_serving_client.convert
--det_dirname:./inference/ch_ppocr_mobile_v2.0_det_klquant_infer/

View File

@ -1,5 +1,5 @@
===========================serving_params===========================
model_name:ch_ppocr_mobile_v2.0_det_KL
model_name:ch_ppocr_mobile_v2_0_det_KL
python:python3.7
trans_model:-m paddle_serving_client.convert
--det_dirname:./inference/ch_ppocr_mobile_v2.0_det_klquant_infer/

View File

@ -1,5 +1,5 @@
===========================cpp_infer_params===========================
model_name:ch_ppocr_mobile_v2.0_det_PACT
model_name:ch_ppocr_mobile_v2_0_det_PACT
use_opencv:True
infer_model:./inference/ch_ppocr_mobile_v2.0_det_pact_infer
infer_quant:False

View File

@ -1,5 +1,5 @@
===========================serving_params===========================
model_name:ch_ppocr_mobile_v2.0_rec_PACT
model_name:ch_ppocr_mobile_v2_0_det_PACT
python:python3.7
trans_model:-m paddle_serving_client.convert
--det_dirname:./inference/ch_ppocr_mobile_v2.0_det_pact_infer/

View File

@ -1,5 +1,5 @@
===========================serving_params===========================
model_name:ch_ppocr_mobile_v2.0_det_PACT
model_name:ch_ppocr_mobile_v2_0_det_PACT
python:python3.7
trans_model:-m paddle_serving_client.convert
--det_dirname:./inference/ch_ppocr_mobile_v2.0_det_pact_infer/

View File

@ -1,5 +1,5 @@
===========================cpp_infer_params===========================
model_name:ch_ppocr_mobile_v2.0_rec
model_name:ch_ppocr_mobile_v2_0_rec
use_opencv:True
infer_model:./inference/ch_ppocr_mobile_v2.0_rec_infer/
infer_quant:False

View File

@ -1,5 +1,5 @@
===========================paddle2onnx_params===========================
model_name:ch_ppocr_mobile_v2.0_rec
model_name:ch_ppocr_mobile_v2_0_rec
python:python3.7
2onnx: paddle2onnx
--det_model_dir:

View File

@ -1,5 +1,5 @@
===========================serving_params===========================
model_name:ch_ppocr_mobile_v2.0_rec
model_name:ch_ppocr_mobile_v2_0_rec
python:python3.7
trans_model:-m paddle_serving_client.convert
--det_dirname:null

View File

@ -1,5 +1,5 @@
===========================train_params===========================
model_name:ch_ppocr_mobile_v2.0_rec
model_name:ch_ppocr_mobile_v2_0_rec
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True

View File

@ -1,5 +1,5 @@
===========================train_params===========================
model_name:ch_ppocr_mobile_v2.0_rec
model_name:ch_ppocr_mobile_v2_0_rec
python:python3.7
gpu_list:192.168.0.1,192.168.0.2;0,1
Global.use_gpu:True

View File

@ -1,5 +1,5 @@
===========================train_params===========================
model_name:ch_ppocr_mobile_v2.0_rec
model_name:ch_ppocr_mobile_v2_0_rec
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True

Some files were not shown because too many files have changed in this diff Show More