fix pgnet (#4815)
parent
55d54dfc91
commit
1a05e3f7e8
|
@ -34,7 +34,7 @@ inference 模型(`paddle.jit.save`保存的模型)
|
|||
- [1. 超轻量中文OCR模型推理](#超轻量中文OCR模型推理)
|
||||
- [2. 其他模型推理](#其他模型推理)
|
||||
|
||||
- [六、参数解释](参数解释)
|
||||
- [六、参数解释](#参数解释)
|
||||
|
||||
|
||||
<a name="训练模型转inference模型"></a>
|
||||
|
@ -504,7 +504,7 @@ PSE算法相关参数如下
|
|||
| e2e_model_dir | str | 无,如果使用端到端模型,该项是必填项 | 端到端模型inference模型路径 |
|
||||
| e2e_limit_side_len | int | 768 | 端到端的输入图像边长限制 |
|
||||
| e2e_limit_type | str | "max" | 端到端的边长限制类型,目前支持`min`, `max`,`min`表示保证图像最短边不小于`e2e_limit_side_len`,`max`表示保证图像最长边不大于`e2e_limit_side_len` |
|
||||
| e2e_pgnet_score_thresh | float | xx | xx |
|
||||
| e2e_pgnet_score_thresh | float | 0.5 | 端到端得分阈值,小于该阈值的结果会被丢弃 |
|
||||
| e2e_char_dict_path | str | "./ppocr/utils/ic15_dict.txt" | 识别的字典文件路径 |
|
||||
| e2e_pgnet_valid_set | str | "totaltext" | 验证集名称,目前支持`totaltext`, `partvgg`,不同数据集对应的后处理方式不同,与训练过程保持一致即可 |
|
||||
| e2e_pgnet_mode | str | "fast" | PGNet的检测结果得分计算方法,支持`fast`和`slow`,`fast`是根据polygon的外接矩形边框内的所有像素计算平均得分,`slow`是根据原始polygon内的所有像素计算平均得分,计算速度相对较慢一些,但是更加准确一些。 |
|
||||
|
|
|
@ -66,13 +66,13 @@ wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/e2e_server_pgnetA_infer.
|
|||
### 单张图像或者图像集合预测
|
||||
```bash
|
||||
# 预测image_dir指定的单张图像
|
||||
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_polygon=True
|
||||
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_valid_set="totaltext"
|
||||
|
||||
# 预测image_dir指定的图像集合
|
||||
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_polygon=True
|
||||
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_valid_set="totaltext"
|
||||
|
||||
# 如果想使用CPU进行预测,需设置use_gpu参数为False
|
||||
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_polygon=True --use_gpu=False
|
||||
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_valid_set="totaltext" --use_gpu=False
|
||||
```
|
||||
### 可视化结果
|
||||
可视化文本检测结果默认保存到./inference_results文件夹里面,结果文件的名称前缀为'e2e_res'。结果示例如下:
|
||||
|
@ -167,9 +167,9 @@ python3 tools/infer_e2e.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.infer_img=
|
|||
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar && tar xf en_server_pgnetA.tar
|
||||
python3 tools/export_model.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./en_server_pgnetA/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/e2e
|
||||
```
|
||||
**PGNet端到端模型推理,需要设置参数`--e2e_algorithm="PGNet"`**,可以执行如下命令:
|
||||
**PGNet端到端模型推理,需要设置参数`--e2e_algorithm="PGNet"` and `--e2e_pgnet_valid_set="partvgg"`**,可以执行如下命令:
|
||||
```
|
||||
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img_10.jpg" --e2e_model_dir="./inference/e2e/" --e2e_pgnet_polygon=False
|
||||
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img_10.jpg" --e2e_model_dir="./inference/e2e/" --e2e_pgnet_valid_set="partvgg" --e2e_pgnet_valid_set="totaltext"
|
||||
```
|
||||
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'e2e_res'。结果示例如下:
|
||||
|
||||
|
@ -178,9 +178,9 @@ python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/im
|
|||
#### (2). 弯曲文本检测模型(Total-Text)
|
||||
对于弯曲文本样例
|
||||
|
||||
**PGNet端到端模型推理,需要设置参数`--e2e_algorithm="PGNet"`,同时,还需要增加参数`--e2e_pgnet_polygon=True`,**可以执行如下命令:
|
||||
**PGNet端到端模型推理,需要设置参数`--e2e_algorithm="PGNet"`,同时,还需要增加参数`--e2e_pgnet_valid_set="totaltext"`,**可以执行如下命令:
|
||||
```
|
||||
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e/" --e2e_pgnet_polygon=True
|
||||
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e/" --e2e_pgnet_valid_set="totaltext"
|
||||
```
|
||||
可视化文本端到端结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'e2e_res'。结果示例如下:
|
||||
|
||||
|
|
|
@ -59,13 +59,13 @@ After decompression, there should be the following file structure:
|
|||
### Single image or image set prediction
|
||||
```bash
|
||||
# Prediction single image specified by image_dir
|
||||
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_polygon=True
|
||||
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_valid_set="totaltext"
|
||||
|
||||
# Prediction the collection of images specified by image_dir
|
||||
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_polygon=True
|
||||
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_valid_set="totaltext"
|
||||
|
||||
# If you want to use CPU for prediction, you need to set use_gpu parameter is false
|
||||
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_polygon=True --use_gpu=False
|
||||
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --use_gpu=False --e2e_pgnet_valid_set="totaltext"
|
||||
```
|
||||
### Visualization results
|
||||
The visualized end-to-end results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'e2e_res'. Examples of results are as follows:
|
||||
|
@ -166,9 +166,9 @@ First, convert the model saved in the PGNet end-to-end training process into an
|
|||
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar && tar xf en_server_pgnetA.tar
|
||||
python3 tools/export_model.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./en_server_pgnetA/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/e2e
|
||||
```
|
||||
**For PGNet quadrangle end-to-end model inference, you need to set the parameter `--e2e_algorithm="PGNet"`**, run the following command:
|
||||
**For PGNet quadrangle end-to-end model inference, you need to set the parameter `--e2e_algorithm="PGNet"` and `--e2e_pgnet_valid_set="partvgg"`**, run the following command:
|
||||
```
|
||||
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img_10.jpg" --e2e_model_dir="./inference/e2e/" --e2e_pgnet_polygon=False
|
||||
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img_10.jpg" --e2e_model_dir="./inference/e2e/" --e2e_pgnet_valid_set="partvgg"
|
||||
```
|
||||
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'e2e_res'. Examples of results are as follows:
|
||||
|
||||
|
@ -176,9 +176,9 @@ The visualized text detection results are saved to the `./inference_results` fol
|
|||
|
||||
#### (2). Curved text detection model (Total-Text)
|
||||
For the curved text example, we use the same model as the quadrilateral
|
||||
**For PGNet end-to-end curved text detection model inference, you need to set the parameter `--e2e_algorithm="PGNet"` and `--e2e_pgnet_polygon=True`**, run the following command:
|
||||
**For PGNet end-to-end curved text detection model inference, you need to set the parameter `--e2e_algorithm="PGNet"` and `--e2e_pgnet_valid_set="totaltext"`**, run the following command:
|
||||
```
|
||||
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e/" --e2e_pgnet_polygon=True
|
||||
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e/" --e2e_pgnet_valid_set="totaltext"
|
||||
```
|
||||
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'e2e_res'. Examples of results are as follows:
|
||||
|
||||
|
|
Loading…
Reference in New Issue