refine db docs
parent
44ab189351
commit
1ffde58519
|
@ -47,13 +47,13 @@
|
|||
### 4.1 Python推理
|
||||
首先将DB文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar) ),可以使用如下命令进行转换:
|
||||
|
||||
```
|
||||
```shell
|
||||
python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.pretrained_model=./det_r50_vd_db_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_db
|
||||
```
|
||||
|
||||
DB文本检测模型推理,可以执行如下命令:
|
||||
|
||||
```
|
||||
```shell
|
||||
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_db/"
|
||||
```
|
||||
|
||||
|
@ -65,15 +65,20 @@ python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_
|
|||
|
||||
<a name="4-2"></a>
|
||||
### 4.2 C++推理
|
||||
敬请期待
|
||||
|
||||
准备好推理模型后,参考[cpp infer](../../deploy/cpp_infer/)教程进行操作即可。
|
||||
|
||||
<a name="4-3"></a>
|
||||
### 4.3 Serving服务化部署
|
||||
敬请期待
|
||||
|
||||
准备好推理模型后,参考[pdserving](../../deploy/pdserving/)教程进行Serving服务化部署,包括Python Serving和C++ Serving两种模式。
|
||||
|
||||
<a name="4-4"></a>
|
||||
### 4.4 更多推理部署
|
||||
敬请期待
|
||||
|
||||
DB模型还支持以下推理部署方式:
|
||||
|
||||
- Paddle2ONNX推理:准备好推理模型后,参考[paddle2onnx](../../deploy/paddle2onnx/)教程操作。
|
||||
|
||||
<a name="5"></a>
|
||||
## 5. FAQ
|
||||
|
|
|
@ -14,4 +14,86 @@
|
|||
- [5. FAQ](#5)
|
||||
|
||||
<a name="1"></a>
|
||||
## 1. Introduction
|
||||
## 1. Introduction
|
||||
|
||||
Paper:
|
||||
> [Real-time Scene Text Detection with Differentiable Binarization](https://arxiv.org/abs/1911.08947)
|
||||
> Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang
|
||||
> AAAI, 2020
|
||||
|
||||
On the ICDAR2015 dataset, the text detection result is as follows:
|
||||
|
||||
|Model|Backbone|Configuration|Precision|Recall|Hmean|Download|
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
|DB|ResNet50_vd|configs/det/det_r50_vd_db.yml|86.41%|78.72%|82.38%|[trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|
||||
|DB|MobileNetV3|configs/det/det_mv3_db.yml|77.29%|73.08%|75.12%|[trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
|
||||
|
||||
|
||||
<a name="2"></a>
|
||||
## 2. Environment
|
||||
Please prepare your environment referring to [prepare the environment](./environment_en.md) and [clone the repo](./clone_en.md).
|
||||
|
||||
|
||||
<a name="3"></a>
|
||||
## 3. Model Training / Evaluation / Prediction
|
||||
|
||||
Please refer to [text detection training tutorial](./detection_en.md). PaddleOCR has modularized the code structure, so that you only need to **replace the configuration file** to train different detection models.
|
||||
|
||||
<a name="4"></a>
|
||||
## 4. Inference and Deployment
|
||||
|
||||
<a name="4-1"></a>
|
||||
### 4.1 Python Inference
|
||||
First, convert the model saved in the DB text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)), you can use the following command to convert:
|
||||
|
||||
```shell
|
||||
python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.pretrained_model=./det_r50_vd_db_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_db
|
||||
```
|
||||
|
||||
DB text detection model inference, you can execute the following command:
|
||||
|
||||
```shell
|
||||
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_db/"
|
||||
```
|
||||
|
||||
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:
|
||||
|
||||

|
||||
|
||||
**Note**: Since the ICDAR2015 dataset has only 1,000 training images, mainly for English scenes, the above model has very poor detection result on Chinese text images.
|
||||
|
||||
|
||||
<a name="4-2"></a>
|
||||
### 4.2 C++ Inference
|
||||
|
||||
With the inference model prepared, refer to the [cpp infer](../../deploy/cpp_infer/) tutorial for C++ inference.
|
||||
|
||||
<a name="4-3"></a>
|
||||
### 4.3 Serving
|
||||
|
||||
With the inference model prepared, refer to the [pdserving](../../deploy/pdserving/) tutorial for service deployment by Paddle Serving.
|
||||
|
||||
<a name="4-4"></a>
|
||||
### 4.4 More
|
||||
|
||||
More deployment schemes supported for DB:
|
||||
|
||||
- Paddle2ONNX: with the inference model prepared, please refer to the [paddle2onnx](../../deploy/paddle2onnx/) tutorial.
|
||||
|
||||
<a name="5"></a>
|
||||
## 5. FAQ
|
||||
|
||||
|
||||
## Citation
|
||||
|
||||
```bibtex
|
||||
@inproceedings{liao2020real,
|
||||
title={Real-time scene text detection with differentiable binarization},
|
||||
author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
|
||||
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
|
||||
volume={34},
|
||||
number={07},
|
||||
pages={11474--11481},
|
||||
year={2020}
|
||||
}
|
||||
```
|
Loading…
Reference in New Issue