add amp train
parent
6fc2726502
commit
2005cc3e5a
|
@ -0,0 +1,135 @@
|
|||
Global:
|
||||
use_gpu: true
|
||||
epoch_num: 1200
|
||||
log_smooth_window: 20
|
||||
print_batch_step: 10
|
||||
save_model_dir: ./output/db_mv3/
|
||||
save_epoch_step: 1200
|
||||
# evaluation is run every 2000 iterations
|
||||
eval_batch_step: [0, 2000]
|
||||
cal_metric_during_train: False
|
||||
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
||||
infer_img: doc/imgs_en/img_10.jpg
|
||||
save_res_path: ./output/det_db/predicts_db.txt
|
||||
|
||||
AMP:
|
||||
scale_loss: 1024.0
|
||||
use_dynamic_loss_scaling: True
|
||||
|
||||
Architecture:
|
||||
model_type: det
|
||||
algorithm: DB
|
||||
Transform:
|
||||
Backbone:
|
||||
name: MobileNetV3
|
||||
scale: 0.5
|
||||
model_name: large
|
||||
Neck:
|
||||
name: DBFPN
|
||||
out_channels: 256
|
||||
Head:
|
||||
name: DBHead
|
||||
k: 50
|
||||
|
||||
Loss:
|
||||
name: DBLoss
|
||||
balance_loss: true
|
||||
main_loss_type: DiceLoss
|
||||
alpha: 5
|
||||
beta: 10
|
||||
ohem_ratio: 3
|
||||
|
||||
Optimizer:
|
||||
name: Adam
|
||||
beta1: 0.9
|
||||
beta2: 0.999
|
||||
lr:
|
||||
learning_rate: 0.001
|
||||
regularizer:
|
||||
name: 'L2'
|
||||
factor: 0
|
||||
|
||||
PostProcess:
|
||||
name: DBPostProcess
|
||||
thresh: 0.3
|
||||
box_thresh: 0.6
|
||||
max_candidates: 1000
|
||||
unclip_ratio: 1.5
|
||||
|
||||
Metric:
|
||||
name: DetMetric
|
||||
main_indicator: hmean
|
||||
|
||||
Train:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/icdar2015/text_localization/
|
||||
label_file_list:
|
||||
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
|
||||
ratio_list: [1.0]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- DetLabelEncode: # Class handling label
|
||||
- IaaAugment:
|
||||
augmenter_args:
|
||||
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
|
||||
- { 'type': Affine, 'args': { 'rotate': [-10, 10] } }
|
||||
- { 'type': Resize, 'args': { 'size': [0.5, 3] } }
|
||||
- EastRandomCropData:
|
||||
size: [640, 640]
|
||||
max_tries: 50
|
||||
keep_ratio: true
|
||||
- MakeBorderMap:
|
||||
shrink_ratio: 0.4
|
||||
thresh_min: 0.3
|
||||
thresh_max: 0.7
|
||||
- MakeShrinkMap:
|
||||
shrink_ratio: 0.4
|
||||
min_text_size: 8
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: 'hwc'
|
||||
- ToCHWImage:
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask'] # the order of the dataloader list
|
||||
loader:
|
||||
shuffle: True
|
||||
drop_last: False
|
||||
batch_size_per_card: 16
|
||||
num_workers: 8
|
||||
use_shared_memory: False
|
||||
|
||||
Eval:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/icdar2015/text_localization/
|
||||
label_file_list:
|
||||
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- DetLabelEncode: # Class handling label
|
||||
- DetResizeForTest:
|
||||
image_shape: [736, 1280]
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: 'hwc'
|
||||
- ToCHWImage:
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
|
||||
loader:
|
||||
shuffle: False
|
||||
drop_last: False
|
||||
batch_size_per_card: 1 # must be 1
|
||||
num_workers: 8
|
||||
use_shared_memory: False
|
|
@ -226,14 +226,29 @@ def train(config,
|
|||
images = batch[0]
|
||||
if use_srn:
|
||||
model_average = True
|
||||
if model_type == 'table' or extra_input:
|
||||
preds = model(images, data=batch[1:])
|
||||
|
||||
# use amp
|
||||
if scaler:
|
||||
with paddle.amp.auto_cast():
|
||||
if model_type == 'table' or extra_input:
|
||||
preds = model(images, data=batch[1:])
|
||||
else:
|
||||
preds = model(images)
|
||||
else:
|
||||
preds = model(images)
|
||||
if model_type == 'table' or extra_input:
|
||||
preds = model(images, data=batch[1:])
|
||||
else:
|
||||
preds = model(images)
|
||||
loss = loss_class(preds, batch)
|
||||
avg_loss = loss['loss']
|
||||
avg_loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
if scaler:
|
||||
scaled_avg_loss = scaler.scale(avg_loss)
|
||||
scaled_avg_loss.backward()
|
||||
scaler.minimize(optimizer, scaled_avg_loss)
|
||||
else:
|
||||
avg_loss.backward()
|
||||
optimizer.step()
|
||||
optimizer.clear_grad()
|
||||
|
||||
train_batch_cost += time.time() - batch_start
|
||||
|
|
|
@ -102,6 +102,23 @@ def main(config, device, logger, vdl_writer):
|
|||
if valid_dataloader is not None:
|
||||
logger.info('valid dataloader has {} iters'.format(
|
||||
len(valid_dataloader)))
|
||||
|
||||
use_amp = True if "AMP" in config else False
|
||||
if use_amp:
|
||||
AMP_RELATED_FLAGS_SETTING = {
|
||||
'FLAGS_cudnn_batchnorm_spatial_persistent': 1,
|
||||
'FLAGS_max_inplace_grad_add': 8,
|
||||
}
|
||||
paddle.fluid.set_flags(AMP_RELATED_FLAGS_SETTING)
|
||||
scale_loss = config["AMP"].get("scale_loss", 1.0)
|
||||
use_dynamic_loss_scaling = config["AMP"].get("use_dynamic_loss_scaling",
|
||||
False)
|
||||
scaler = paddle.amp.GradScaler(
|
||||
init_loss_scaling=scale_loss,
|
||||
use_dynamic_loss_scaling=use_dynamic_loss_scaling)
|
||||
else:
|
||||
scaler = None
|
||||
|
||||
# start train
|
||||
program.train(config, train_dataloader, valid_dataloader, device, model,
|
||||
loss_class, optimizer, lr_scheduler, post_process_class,
|
||||
|
|
Loading…
Reference in New Issue