update rec introduc
|
@ -70,7 +70,7 @@ LKPAN(Large Kernel PAN)是一个具有更大感受野的轻量级[PAN](https://a
|
|||
<a name="3"></a>
|
||||
## 3. 识别优化
|
||||
|
||||
[SVTR](https://arxiv.org/abs/2205.00159) 证明了强大的单视觉模型(无需序列模型)即可高效准确完成文本识别任务,在中英文数据上均有优秀的表现。经过实验验证,SVTR_Tiny在自建的 [中文数据集上](https://arxiv.org/abs/2109.03144) ,识别精度可以提升10.7%,网络结构如下所示:
|
||||
[SVTR](https://arxiv.org/abs/2205.00159) 证明了强大的单视觉模型(无需序列模型)即可高效准确完成文本识别任务,在中英文数据上均有优秀的表现。经过实验验证,SVTR_Tiny 在自建的 [中文数据集上](https://arxiv.org/abs/2109.03144) ,识别精度可以提升10.7%,SVTR_Tiny 网络结构如下所示:
|
||||
|
||||
<img src="../ppocr_v3/svtr_tiny.jpg" width=800>
|
||||
|
||||
|
@ -83,11 +83,22 @@ PP-OCRv3 期望在提升模型精度的同时,不带来额外的推理耗时
|
|||
2. 将4个 Global Attenntion Block 减小到2个,精度为72.9%,加速69%,网络结构如下所示:
|
||||
<img src="../ppocr_v3/svtr_g2.png" width=800>
|
||||
3. 实验发现 Global Attention 的预测速度与输入其特征的shape有关,因此后移Global Mixing Block的位置到池化层之后,精度下降为71.9%,速度超越 CNN-base 的PP-OCRv2 22%,网络结构如下所示:
|
||||
<img src="../ppocr_v3/ppocr_v3.png" width=800>
|
||||
<img src="../ppocr_v3/LCNet-SVTR.png" width=800>
|
||||
|
||||
| id | 策略 | 模型大小 | 精度 | 速度(cpu + mkldnn)|
|
||||
|-----|-----|--------|----| --- |
|
||||
| 01 | PP-OCRv2 | 8M | 69.3% | 8.54ms |
|
||||
| 02 | SVTR_Tiny | 21M | 80.1% | 97ms |
|
||||
| 03 | PP-LCNet_SVTR(G4) | 9.2M | 76% | 30ms |
|
||||
| 04 | PP-LCNet_SVTR(G2) | 13M | 72.98% | 9.37ms |
|
||||
| 05 | PP-LCNet_SVTR | 12M | 71.9% | 6.6ms |
|
||||
|
||||
注: 测试速度时,输入图片尺寸均为(3,32,320)
|
||||
|
||||
为了提升模型精度同时不引入额外推理成本,PP-OCRv3参考GTC策略,使用Attention监督CTC训练,预测时完全去除Attention模块,在推理阶段不增加任何耗时, 精度提升3.8%,训练流程如下所示:
|
||||
<img src="../ppocr_v3/GTC.png" width=800>
|
||||
|
||||
|
||||
在训练策略方面,PP-OCRv3参考 [SSL](https://github.com/ku21fan/STR-Fewer-Labels) 设计了文本方向任务,训练了适用于文本识别的预训练模型,加速模型收敛过程,精度提升了0.6%; 使用UDML蒸馏策略,进一步提升精度1.5%,训练流程所示:
|
||||
|
||||
<img src="../ppocr_v3/SSL.png" width="300"> <img src="../ppocr_v3/UDML.png" width="500">
|
||||
|
@ -114,17 +125,14 @@ PP-OCRv3 期望在提升模型精度的同时,不带来额外的推理耗时
|
|||
|-----|-----|--------|----| --- |
|
||||
| 01 | PP-OCRv2 | 8M | 69.3% | 8.54ms |
|
||||
| 02 | SVTR_Tiny | 21M | 80.1% | 97ms |
|
||||
| 03 | LCNet_SVTR_G4 | 9.2M | 76% | 30ms |
|
||||
| 04 | LCNet_SVTR_G2 | 13M | 72.98% | 9.37ms |
|
||||
| 05 | PP-OCRv3 | 12M | 71.9% | 6.6ms |
|
||||
| 06 | + large input_shape | 12M | 73.98% | 7.6ms |
|
||||
| 06 | + GTC | 12M | 75.8% | 7.6ms |
|
||||
| 07 | + RecConAug | 12M | 76.3% | 7.6ms |
|
||||
| 08 | + SSL pretrain | 12M | 76.9% | 7.6ms |
|
||||
| 09 | + UDML | 12M | 78.4% | 7.6ms |
|
||||
| 10 | + unlabeled data | 12M | 79.4% | 7.6ms |
|
||||
| 03 | PP-LCNet_SVTR | 12M | 71.9% | 6.6ms |
|
||||
| 04 | + GTC | 12M | 75.8% | 7.6ms |
|
||||
| 05 | + TextConAug | 12M | 76.3% | 7.6ms |
|
||||
| 06 | + TextRotNet | 12M | 76.9% | 7.6ms |
|
||||
| 07 | + UDML | 12M | 78.4% | 7.6ms |
|
||||
| 08 | + HLD | 12M | 79.4% | 7.6ms |
|
||||
|
||||
注: 测试速度时,实验01-05输入图片尺寸均为(3,32,320),06-10输入图片尺寸均为(3,48,320)
|
||||
注: 测试速度时,实验01-03输入图片尺寸均为(3,32,320),04-08输入图片尺寸均为(3,48,320)
|
||||
|
||||
<a name="4"></a>
|
||||
## 4. 端到端评估
|
||||
|
|
Before Width: | Height: | Size: 415 KiB After Width: | Height: | Size: 238 KiB |
After Width: | Height: | Size: 286 KiB |
Before Width: | Height: | Size: 426 KiB |
Before Width: | Height: | Size: 323 KiB After Width: | Height: | Size: 180 KiB |
Before Width: | Height: | Size: 550 KiB After Width: | Height: | Size: 208 KiB |
Before Width: | Height: | Size: 586 KiB After Width: | Height: | Size: 726 KiB |