doc: add doc for satrn (#11397)
parent
0382bfb02d
commit
25ffa816f7
|
@ -88,6 +88,7 @@ PaddleOCR将**持续新增**支持OCR领域前沿算法与模型,**欢迎广
|
|||
- [x] [RFL](./algorithm_rec_rfl.md)
|
||||
- [x] [ParseQ](./algorithm_rec_parseq.md)
|
||||
- [x] [CPPD](./algorithm_rec_cppd.md)
|
||||
- [x] [SATRN](./algorithm_rec_satrn.md)
|
||||
|
||||
参考[DTRB](https://arxiv.org/abs/1904.01906)[3]文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
|
||||
|
||||
|
@ -114,7 +115,7 @@ PaddleOCR将**持续新增**支持OCR领域前沿算法与模型,**欢迎广
|
|||
|RFL|ResNetRFL| 88.63% | rec_resnet_rfl_att | [训练模型](https://paddleocr.bj.bcebos.com/contribution/rec_resnet_rfl_att_train.tar) |
|
||||
|ParseQ|VIT| 91.24% | rec_vit_parseq_synth | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/parseq/rec_vit_parseq_synth.tgz) |
|
||||
|CPPD|SVTR-Base| 93.8% | rec_svtrnet_cppd_base_en | [训练模型](https://paddleocr.bj.bcebos.com/CCPD/rec_svtr_cppd_base_en_train.tar) |
|
||||
|
||||
|SATRN|ShallowCNN| 88.05% | rec_satrn | [训练模型](https://pan.baidu.com/s/10J-Bsd881bimKaclKszlaQ?pwd=lk8a) |
|
||||
|
||||
<a name="13"></a>
|
||||
|
||||
|
|
|
@ -0,0 +1,112 @@
|
|||
# SATRN
|
||||
|
||||
- [1. 算法简介](#1)
|
||||
- [2. 环境配置](#2)
|
||||
- [3. 模型训练、评估、预测](#3)
|
||||
- [3.1 训练](#3-1)
|
||||
- [3.2 评估](#3-2)
|
||||
- [3.3 预测](#3-3)
|
||||
- [4. 推理部署](#4)
|
||||
- [4.1 Python推理](#4-1)
|
||||
- [4.2 C++推理](#4-2)
|
||||
- [4.3 Serving服务化部署](#4-3)
|
||||
- [4.4 更多推理部署](#4-4)
|
||||
- [5. FAQ](#5)
|
||||
|
||||
<a name="1"></a>
|
||||
## 1. 算法简介
|
||||
|
||||
论文信息:
|
||||
> [On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention](https://arxiv.org/abs/1910.04396)
|
||||
> Junyeop Lee, Sungrae Park, Jeonghun Baek, Seong Joon Oh, Seonghyeon Kim, Hwalsuk Lee
|
||||
> CVPR, 2020
|
||||
参考[DTRB](https://arxiv.org/abs/1904.01906) 文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
|
||||
|
||||
|模型|骨干网络|Avg Accuracy|配置文件|下载链接|
|
||||
|---|---|---|---|---|
|
||||
|SATRN|ShallowCNN|88.05%|[configs/rec/rec_satrn.yml](../../configs/rec/rec_satrn.yml)|[训练模型](https://pan.baidu.com/s/10J-Bsd881bimKaclKszlaQ?pwd=lk8a)|
|
||||
|
||||
|
||||
|
||||
<a name="2"></a>
|
||||
## 2. 环境配置
|
||||
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
|
||||
|
||||
|
||||
<a name="3"></a>
|
||||
## 3. 模型训练、评估、预测
|
||||
|
||||
请参考[文本识别训练教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要**更换配置文件**即可。
|
||||
|
||||
- 训练
|
||||
|
||||
在完成数据准备后,便可以启动训练,训练命令如下:
|
||||
|
||||
```
|
||||
#单卡训练(训练周期长,不建议)
|
||||
python3 tools/train.py -c configs/rec/rec_satrn.yml
|
||||
#多卡训练,通过--gpus参数指定卡号
|
||||
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c rec_satrn.yml
|
||||
```
|
||||
|
||||
- 评估
|
||||
|
||||
```
|
||||
# GPU 评估, Global.pretrained_model 为待测权重
|
||||
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_satrn.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
|
||||
```
|
||||
|
||||
- 预测:
|
||||
|
||||
```
|
||||
# 预测使用的配置文件必须与训练一致
|
||||
python3 tools/infer_rec.py -c configs/rec/rec_satrn.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
|
||||
```
|
||||
|
||||
<a name="4"></a>
|
||||
## 4. 推理部署
|
||||
|
||||
<a name="4-1"></a>
|
||||
### 4.1 Python推理
|
||||
首先将SATRN文本识别训练过程中保存的模型,转换成inference model。( [模型下载地址](https://pan.baidu.com/s/10J-Bsd881bimKaclKszlaQ?pwd=lk8a) ),可以使用如下命令进行转换:
|
||||
|
||||
```
|
||||
python3 tools/export_model.py -c configs/rec/rec_satrn.yml -o Global.pretrained_model=./rec_satrn/best_accuracy Global.save_inference_dir=./inference/rec_satrn
|
||||
```
|
||||
|
||||
SATRN文本识别模型推理,可以执行如下命令:
|
||||
|
||||
```
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_satrn/" --rec_image_shape="3, 48, 48, 160" --rec_algorithm="SATRN" --rec_char_dict_path="ppocr/utils/dict90.txt" --max_text_length=30 --use_space_char=False
|
||||
```
|
||||
|
||||
<a name="4-2"></a>
|
||||
### 4.2 C++推理
|
||||
|
||||
由于C++预处理后处理还未支持SATRN,所以暂未支持
|
||||
|
||||
<a name="4-3"></a>
|
||||
### 4.3 Serving服务化部署
|
||||
|
||||
暂不支持
|
||||
|
||||
<a name="4-4"></a>
|
||||
### 4.4 更多推理部署
|
||||
|
||||
暂不支持
|
||||
|
||||
<a name="5"></a>
|
||||
## 5. FAQ
|
||||
|
||||
## 引用
|
||||
|
||||
```bibtex
|
||||
@article{lee2019recognizing,
|
||||
title={On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention},
|
||||
author={Junyeop Lee and Sungrae Park and Jeonghun Baek and Seong Joon Oh and Seonghyeon Kim and Hwalsuk Lee},
|
||||
year={2019},
|
||||
eprint={1910.04396},
|
||||
archivePrefix={arXiv},
|
||||
primaryClass={cs.CV}
|
||||
}
|
||||
```
|
|
@ -85,6 +85,7 @@ Supported text recognition algorithms (Click the link to get the tutorial):
|
|||
- [x] [RFL](./algorithm_rec_rfl_en.md)
|
||||
- [x] [ParseQ](./algorithm_rec_parseq.md)
|
||||
- [x] [CPPD](./algorithm_rec_cppd_en.md)
|
||||
- [x] [SATRN](./algorithm_rec_satrn_en.md)
|
||||
|
||||
Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow:
|
||||
|
||||
|
@ -111,6 +112,7 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r
|
|||
|RFL|ResNetRFL| 88.63% | rec_resnet_rfl_att | [trained model](https://paddleocr.bj.bcebos.com/contribution/rec_resnet_rfl_att_train.tar) |
|
||||
|ParseQ|VIT| 91.24% | rec_vit_parseq_synth | [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/parseq/rec_vit_parseq_synth.tgz) |
|
||||
|CPPD|SVTR-Base| 93.8% | rec_svtrnet_cppd_base_en | [trained model](https://paddleocr.bj.bcebos.com/CCPD/rec_svtr_cppd_base_en_train.tar) |
|
||||
|SATRN|ShallowCNN| 88.05% | rec_satrn | [trained model](https://pan.baidu.com/s/10J-Bsd881bimKaclKszlaQ?pwd=lk8a) |
|
||||
|
||||
|
||||
<a name="13"></a>
|
||||
|
|
|
@ -0,0 +1,111 @@
|
|||
# SATRN
|
||||
|
||||
- [1. Introduction](#1)
|
||||
- [2. Environment](#2)
|
||||
- [3. Model Training / Evaluation / Prediction](#3)
|
||||
- [3.1 Training](#3-1)
|
||||
- [3.2 Evaluation](#3-2)
|
||||
- [3.3 Prediction](#3-3)
|
||||
- [4. Inference and Deployment](#4)
|
||||
- [4.1 Python Inference](#4-1)
|
||||
- [4.2 C++ Inference](#4-2)
|
||||
- [4.3 Serving](#4-3)
|
||||
- [4.4 More](#4-4)
|
||||
- [5. FAQ](#5)
|
||||
|
||||
<a name="1"></a>
|
||||
## 1. Introduction
|
||||
|
||||
论文信息:
|
||||
> [On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention](https://arxiv.org/abs/1910.04396)
|
||||
> Junyeop Lee, Sungrae Park, Jeonghun Baek, Seong Joon Oh, Seonghyeon Kim, Hwalsuk Lee
|
||||
> CVPR, 2020
|
||||
Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:
|
||||
|
||||
|Model|Backbone|config|Acc|Download link|
|
||||
| --- | --- | --- | --- | --- |
|
||||
|SATRN|ShallowCNN|88.05%|[configs/rec/rec_satrn.yml](../../configs/rec/rec_satrn.yml)|[训练模型](https://pan.baidu.com/s/10J-Bsd881bimKaclKszlaQ?pwd=lk8a)|
|
||||
|
||||
|
||||
<a name="2"></a>
|
||||
## 2. Environment
|
||||
Please refer to ["Environment Preparation"](./environment_en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone_en.md) to clone the project code.
|
||||
|
||||
|
||||
<a name="3"></a>
|
||||
## 3. Model Training / Evaluation / Prediction
|
||||
|
||||
Please refer to [Text Recognition Tutorial](./recognition_en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
|
||||
|
||||
Training:
|
||||
|
||||
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
|
||||
|
||||
```
|
||||
#Single GPU training (long training period, not recommended)
|
||||
python3 tools/train.py -c configs/rec/rec_satrn.yml
|
||||
#Multi GPU training, specify the gpu number through the --gpus parameter
|
||||
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_satrn.yml
|
||||
```
|
||||
|
||||
Evaluation:
|
||||
|
||||
```
|
||||
# GPU evaluation
|
||||
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_satrn.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
|
||||
```
|
||||
|
||||
Prediction:
|
||||
|
||||
```
|
||||
# The configuration file used for prediction must match the training
|
||||
python3 tools/infer_rec.py -c configs/rec/rec_satrn.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
|
||||
```
|
||||
|
||||
<a name="4"></a>
|
||||
## 4. Inference and Deployment
|
||||
|
||||
<a name="4-1"></a>
|
||||
### 4.1 Python Inference
|
||||
First, the model saved during the SATRN text recognition training process is converted into an inference model. ( [Model download link](https://pan.baidu.com/s/10J-Bsd881bimKaclKszlaQ?pwd=lk8a) ), you can use the following command to convert:
|
||||
|
||||
```
|
||||
python3 tools/export_model.py -c configs/rec/rec_satrn.yml -o Global.pretrained_model=./rec_satrn_train/best_accuracy Global.save_inference_dir=./inference/rec_satrn
|
||||
```
|
||||
|
||||
For SATRN text recognition model inference, the following commands can be executed:
|
||||
|
||||
```
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_satrn/" --rec_image_shape="3, 48, 48, 160" --rec_algorithm="SATRN" --rec_char_dict_path="ppocr/utils/dict90.txt" --max_text_length=30 --use_space_char=False
|
||||
```
|
||||
|
||||
<a name="4-2"></a>
|
||||
### 4.2 C++ Inference
|
||||
|
||||
Not supported
|
||||
|
||||
<a name="4-3"></a>
|
||||
### 4.3 Serving
|
||||
|
||||
Not supported
|
||||
|
||||
<a name="4-4"></a>
|
||||
### 4.4 More
|
||||
|
||||
Not supported
|
||||
|
||||
<a name="5"></a>
|
||||
## 5. FAQ
|
||||
|
||||
## 引用
|
||||
|
||||
```bibtex
|
||||
@article{lee2019recognizing,
|
||||
title={On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention},
|
||||
author={Junyeop Lee and Sungrae Park and Jeonghun Baek and Seong Joon Oh and Seonghyeon Kim and Hwalsuk Lee},
|
||||
year={2019},
|
||||
eprint={1910.04396},
|
||||
archivePrefix={arXiv},
|
||||
primaryClass={cs.CV}
|
||||
}
|
||||
```
|
Loading…
Reference in New Issue