Merge branch 'PaddlePaddle:release/2.3' into release/2.3
commit
349b7d38cd
|
@ -141,6 +141,7 @@ Train:
|
|||
img_mode: BGR
|
||||
channel_first: False
|
||||
- DetLabelEncode: # Class handling label
|
||||
- CopyPaste:
|
||||
- IaaAugment:
|
||||
augmenter_args:
|
||||
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
|
|
@ -91,7 +91,7 @@ Optimizer:
|
|||
|
||||
PostProcess:
|
||||
name: DistillationDBPostProcess
|
||||
model_name: ["Student", "Student2"]
|
||||
model_name: ["Student"]
|
||||
key: head_out
|
||||
thresh: 0.3
|
||||
box_thresh: 0.6
|
|
@ -8,7 +8,7 @@ Global:
|
|||
# evaluation is run every 5000 iterations after the 4000th iteration
|
||||
eval_batch_step: [4000, 5000]
|
||||
cal_metric_during_train: False
|
||||
pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained/
|
||||
pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
||||
|
@ -106,4 +106,4 @@ Eval:
|
|||
shuffle: False
|
||||
drop_last: False
|
||||
batch_size_per_card: 1 # must be 1
|
||||
num_workers: 2
|
||||
num_workers: 2
|
||||
|
|
|
@ -8,7 +8,7 @@ Global:
|
|||
# evaluation is run every 5000 iterations after the 4000th iteration
|
||||
eval_batch_step: [4000, 5000]
|
||||
cal_metric_during_train: False
|
||||
pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained/
|
||||
pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
||||
|
@ -105,4 +105,4 @@ Eval:
|
|||
shuffle: False
|
||||
drop_last: False
|
||||
batch_size_per_card: 1 # must be 1
|
||||
num_workers: 2
|
||||
num_workers: 2
|
||||
|
|
|
@ -1,29 +1,28 @@
|
|||
Global:
|
||||
use_gpu: true
|
||||
epoch_num: 50
|
||||
epoch_num: 400
|
||||
log_smooth_window: 20
|
||||
print_batch_step: 5
|
||||
save_model_dir: ./output/table_mv3/
|
||||
save_epoch_step: 5
|
||||
save_epoch_step: 3
|
||||
# evaluation is run every 400 iterations after the 0th iteration
|
||||
eval_batch_step: [0, 400]
|
||||
cal_metric_during_train: True
|
||||
pretrained_model:
|
||||
pretrained_model:
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
||||
infer_img: doc/imgs_words/ch/word_1.jpg
|
||||
infer_img: doc/table/table.jpg
|
||||
# for data or label process
|
||||
character_dict_path: ppocr/utils/dict/table_structure_dict.txt
|
||||
character_type: en
|
||||
max_text_length: 100
|
||||
max_elem_length: 500
|
||||
max_elem_length: 800
|
||||
max_cell_num: 500
|
||||
infer_mode: False
|
||||
process_total_num: 0
|
||||
process_cut_num: 0
|
||||
|
||||
|
||||
Optimizer:
|
||||
name: Adam
|
||||
beta1: 0.9
|
||||
|
@ -41,13 +40,15 @@ Architecture:
|
|||
Backbone:
|
||||
name: MobileNetV3
|
||||
scale: 1.0
|
||||
model_name: small
|
||||
disable_se: True
|
||||
model_name: large
|
||||
Head:
|
||||
name: TableAttentionHead
|
||||
hidden_size: 256
|
||||
l2_decay: 0.00001
|
||||
loc_type: 2
|
||||
max_text_length: 100
|
||||
max_elem_length: 800
|
||||
max_cell_num: 500
|
||||
|
||||
Loss:
|
||||
name: TableAttentionLoss
|
||||
|
|
|
@ -18,7 +18,7 @@ import paddlehub as hub
|
|||
from tools.infer.utility import base64_to_cv2
|
||||
from tools.infer.predict_det import TextDetector
|
||||
from tools.infer.utility import parse_args
|
||||
from deploy.hubserving.ocr_system.params import read_params
|
||||
from deploy.hubserving.ocr_det.params import read_params
|
||||
|
||||
|
||||
@moduleinfo(
|
||||
|
|
|
@ -50,7 +50,7 @@ PaddleOCR基于动态图开源的文本识别算法列表:
|
|||
- [x] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))[11]
|
||||
- [x] RARE([paper](https://arxiv.org/abs/1603.03915v1))[12]
|
||||
- [x] SRN([paper](https://arxiv.org/abs/2003.12294))[5]
|
||||
- [x] NRTR([paper](https://arxiv.org/abs/1806.00926v2))
|
||||
- [x] NRTR([paper](https://arxiv.org/abs/1806.00926v2))[13]
|
||||
|
||||
参考[DTRB][3](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
|
||||
|
||||
|
@ -78,4 +78,3 @@ PaddleOCR文本检测算法的训练和使用请参考文档教程中[模型训
|
|||
## 3. 模型推理
|
||||
|
||||
上述模型中除PP-OCR系列模型以外,其余模型仅支持基于Python引擎的推理,具体内容可参考[基于Python预测引擎推理](./inference.md)
|
||||
|
||||
|
|
|
@ -112,4 +112,14 @@
|
|||
year={2016}
|
||||
}
|
||||
|
||||
13.NRTR
|
||||
@misc{sheng2019nrtr,
|
||||
title={NRTR: A No-Recurrence Sequence-to-Sequence Model For Scene Text Recognition},
|
||||
author={Fenfen Sheng and Zhineng Chen and Bo Xu},
|
||||
year={2019},
|
||||
eprint={1806.00926},
|
||||
archivePrefix={arXiv},
|
||||
primaryClass={cs.CV}
|
||||
}
|
||||
|
||||
```
|
||||
|
|
|
@ -11,7 +11,10 @@
|
|||
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
#See the License for the specific language governing permissions and
|
||||
#limitations under the License.
|
||||
|
||||
"""
|
||||
This code is refered from:
|
||||
https://github.com/songdejia/EAST/blob/master/data_utils.py
|
||||
"""
|
||||
import math
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
@ -24,10 +27,10 @@ __all__ = ['EASTProcessTrain']
|
|||
|
||||
class EASTProcessTrain(object):
|
||||
def __init__(self,
|
||||
image_shape = [512, 512],
|
||||
background_ratio = 0.125,
|
||||
min_crop_side_ratio = 0.1,
|
||||
min_text_size = 10,
|
||||
image_shape=[512, 512],
|
||||
background_ratio=0.125,
|
||||
min_crop_side_ratio=0.1,
|
||||
min_text_size=10,
|
||||
**kwargs):
|
||||
self.input_size = image_shape[1]
|
||||
self.random_scale = np.array([0.5, 1, 2.0, 3.0])
|
||||
|
@ -282,12 +285,7 @@ class EASTProcessTrain(object):
|
|||
1.0 / max(min(poly_h, poly_w), 1.0)
|
||||
return score_map, geo_map, training_mask
|
||||
|
||||
def crop_area(self,
|
||||
im,
|
||||
polys,
|
||||
tags,
|
||||
crop_background=False,
|
||||
max_tries=50):
|
||||
def crop_area(self, im, polys, tags, crop_background=False, max_tries=50):
|
||||
"""
|
||||
make random crop from the input image
|
||||
:param im:
|
||||
|
@ -436,4 +434,4 @@ class EASTProcessTrain(object):
|
|||
data['geo_map'] = geo_map
|
||||
data['training_mask'] = training_mask
|
||||
# print(im.shape, score_map.shape, geo_map.shape, training_mask.shape)
|
||||
return data
|
||||
return data
|
||||
|
|
|
@ -11,6 +11,11 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/data_loader/modules/iaa_augment.py
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
|
|
@ -1,5 +1,20 @@
|
|||
# -*- coding:utf-8 -*-
|
||||
|
||||
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/data_loader/modules/make_border_map.py
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
|
|
@ -1,5 +1,20 @@
|
|||
# -*- coding:utf-8 -*-
|
||||
|
||||
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/data_loader/modules/make_shrink_map.py
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
|
|
@ -1,5 +1,20 @@
|
|||
# -*- coding:utf-8 -*-
|
||||
|
||||
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/data_loader/modules/random_crop_data.py
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
|
|
@ -11,7 +11,10 @@
|
|||
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
#See the License for the specific language governing permissions and
|
||||
#limitations under the License.
|
||||
|
||||
"""
|
||||
This part code is refered from:
|
||||
https://github.com/songdejia/EAST/blob/master/data_utils.py
|
||||
"""
|
||||
import math
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
|
|
@ -11,7 +11,10 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/RubanSeven/Text-Image-Augmentation-python/blob/master/augment.py
|
||||
"""
|
||||
import numpy as np
|
||||
from .warp_mls import WarpMLS
|
||||
|
||||
|
|
|
@ -11,7 +11,10 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/RubanSeven/Text-Image-Augmentation-python/blob/master/warp_mls.py
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
|
||||
|
|
|
@ -11,7 +11,10 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/models/losses/basic_loss.py
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
|
|
@ -11,6 +11,10 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/models/losses/DB_loss.py
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
|
|
@ -12,6 +12,8 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This code is refer from: https://github.com/PaddlePaddle/PaddleClas/blob/develop/ppcls/arch/backbone/legendary_models/pp_lcnet.py
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
|
|
@ -75,7 +75,7 @@ class AttentionHead(nn.Layer):
|
|||
probs_step, axis=1)], axis=1)
|
||||
next_input = probs_step.argmax(axis=1)
|
||||
targets = next_input
|
||||
|
||||
probs = paddle.nn.functional.softmax(probs, axis=2)
|
||||
return probs
|
||||
|
||||
|
||||
|
|
|
@ -23,32 +23,40 @@ import numpy as np
|
|||
|
||||
|
||||
class TableAttentionHead(nn.Layer):
|
||||
def __init__(self, in_channels, hidden_size, loc_type, in_max_len=488, **kwargs):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
hidden_size,
|
||||
loc_type,
|
||||
in_max_len=488,
|
||||
max_text_length=100,
|
||||
max_elem_length=800,
|
||||
max_cell_num=500,
|
||||
**kwargs):
|
||||
super(TableAttentionHead, self).__init__()
|
||||
self.input_size = in_channels[-1]
|
||||
self.hidden_size = hidden_size
|
||||
self.elem_num = 30
|
||||
self.max_text_length = 100
|
||||
self.max_elem_length = 500
|
||||
self.max_cell_num = 500
|
||||
self.max_text_length = max_text_length
|
||||
self.max_elem_length = max_elem_length
|
||||
self.max_cell_num = max_cell_num
|
||||
|
||||
self.structure_attention_cell = AttentionGRUCell(
|
||||
self.input_size, hidden_size, self.elem_num, use_gru=False)
|
||||
self.structure_generator = nn.Linear(hidden_size, self.elem_num)
|
||||
self.loc_type = loc_type
|
||||
self.in_max_len = in_max_len
|
||||
|
||||
|
||||
if self.loc_type == 1:
|
||||
self.loc_generator = nn.Linear(hidden_size, 4)
|
||||
else:
|
||||
if self.in_max_len == 640:
|
||||
self.loc_fea_trans = nn.Linear(400, self.max_elem_length+1)
|
||||
self.loc_fea_trans = nn.Linear(400, self.max_elem_length + 1)
|
||||
elif self.in_max_len == 800:
|
||||
self.loc_fea_trans = nn.Linear(625, self.max_elem_length+1)
|
||||
self.loc_fea_trans = nn.Linear(625, self.max_elem_length + 1)
|
||||
else:
|
||||
self.loc_fea_trans = nn.Linear(256, self.max_elem_length+1)
|
||||
self.loc_fea_trans = nn.Linear(256, self.max_elem_length + 1)
|
||||
self.loc_generator = nn.Linear(self.input_size + hidden_size, 4)
|
||||
|
||||
|
||||
def _char_to_onehot(self, input_char, onehot_dim):
|
||||
input_ont_hot = F.one_hot(input_char, onehot_dim)
|
||||
return input_ont_hot
|
||||
|
@ -60,16 +68,16 @@ class TableAttentionHead(nn.Layer):
|
|||
if len(fea.shape) == 3:
|
||||
pass
|
||||
else:
|
||||
last_shape = int(np.prod(fea.shape[2:])) # gry added
|
||||
last_shape = int(np.prod(fea.shape[2:])) # gry added
|
||||
fea = paddle.reshape(fea, [fea.shape[0], fea.shape[1], last_shape])
|
||||
fea = fea.transpose([0, 2, 1]) # (NTC)(batch, width, channels)
|
||||
batch_size = fea.shape[0]
|
||||
|
||||
|
||||
hidden = paddle.zeros((batch_size, self.hidden_size))
|
||||
output_hiddens = []
|
||||
if self.training and targets is not None:
|
||||
structure = targets[0]
|
||||
for i in range(self.max_elem_length+1):
|
||||
for i in range(self.max_elem_length + 1):
|
||||
elem_onehots = self._char_to_onehot(
|
||||
structure[:, i], onehot_dim=self.elem_num)
|
||||
(outputs, hidden), alpha = self.structure_attention_cell(
|
||||
|
@ -96,7 +104,7 @@ class TableAttentionHead(nn.Layer):
|
|||
alpha = None
|
||||
max_elem_length = paddle.to_tensor(self.max_elem_length)
|
||||
i = 0
|
||||
while i < max_elem_length+1:
|
||||
while i < max_elem_length + 1:
|
||||
elem_onehots = self._char_to_onehot(
|
||||
temp_elem, onehot_dim=self.elem_num)
|
||||
(outputs, hidden), alpha = self.structure_attention_cell(
|
||||
|
@ -105,7 +113,7 @@ class TableAttentionHead(nn.Layer):
|
|||
structure_probs_step = self.structure_generator(outputs)
|
||||
temp_elem = structure_probs_step.argmax(axis=1, dtype="int32")
|
||||
i += 1
|
||||
|
||||
|
||||
output = paddle.concat(output_hiddens, axis=1)
|
||||
structure_probs = self.structure_generator(output)
|
||||
structure_probs = F.softmax(structure_probs)
|
||||
|
@ -119,9 +127,9 @@ class TableAttentionHead(nn.Layer):
|
|||
loc_concat = paddle.concat([output, loc_fea], axis=2)
|
||||
loc_preds = self.loc_generator(loc_concat)
|
||||
loc_preds = F.sigmoid(loc_preds)
|
||||
return {'structure_probs':structure_probs, 'loc_preds':loc_preds}
|
||||
return {'structure_probs': structure_probs, 'loc_preds': loc_preds}
|
||||
|
||||
|
||||
|
||||
class AttentionGRUCell(nn.Layer):
|
||||
def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False):
|
||||
super(AttentionGRUCell, self).__init__()
|
||||
|
|
|
@ -11,6 +11,10 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/clovaai/deep-text-recognition-benchmark/blob/master/modules/transformation.py
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
@ -231,7 +235,8 @@ class GridGenerator(nn.Layer):
|
|||
""" Return inv_delta_C which is needed to calculate T """
|
||||
F = self.F
|
||||
hat_eye = paddle.eye(F, dtype='float64') # F x F
|
||||
hat_C = paddle.norm(C.reshape([1, F, 2]) - C.reshape([F, 1, 2]), axis=2) + hat_eye
|
||||
hat_C = paddle.norm(
|
||||
C.reshape([1, F, 2]) - C.reshape([F, 1, 2]), axis=2) + hat_eye
|
||||
hat_C = (hat_C**2) * paddle.log(hat_C)
|
||||
delta_C = paddle.concat( # F+3 x F+3
|
||||
[
|
||||
|
|
|
@ -11,7 +11,10 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This code is refered from:
|
||||
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/post_processing/seg_detector_representer.py
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
@ -190,7 +193,8 @@ class DBPostProcess(object):
|
|||
|
||||
|
||||
class DistillationDBPostProcess(object):
|
||||
def __init__(self, model_name=["student"],
|
||||
def __init__(self,
|
||||
model_name=["student"],
|
||||
key=None,
|
||||
thresh=0.3,
|
||||
box_thresh=0.6,
|
||||
|
@ -201,12 +205,13 @@ class DistillationDBPostProcess(object):
|
|||
**kwargs):
|
||||
self.model_name = model_name
|
||||
self.key = key
|
||||
self.post_process = DBPostProcess(thresh=thresh,
|
||||
box_thresh=box_thresh,
|
||||
max_candidates=max_candidates,
|
||||
unclip_ratio=unclip_ratio,
|
||||
use_dilation=use_dilation,
|
||||
score_mode=score_mode)
|
||||
self.post_process = DBPostProcess(
|
||||
thresh=thresh,
|
||||
box_thresh=box_thresh,
|
||||
max_candidates=max_candidates,
|
||||
unclip_ratio=unclip_ratio,
|
||||
use_dilation=use_dilation,
|
||||
score_mode=score_mode)
|
||||
|
||||
def __call__(self, predicts, shape_list):
|
||||
results = {}
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
"""
|
||||
Locality aware nms.
|
||||
This code is refered from: https://github.com/songdejia/EAST/blob/master/locality_aware_nms.py
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
|
|
@ -11,7 +11,10 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/WenmuZhou/PytorchOCR/blob/master/torchocr/utils/logging.py
|
||||
"""
|
||||
import os
|
||||
import sys
|
||||
import logging
|
||||
|
|
|
@ -187,7 +187,7 @@ def create_predictor(args, mode, logger):
|
|||
"nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
|
||||
}
|
||||
max_input_shape = {
|
||||
"x": [1, 3, 2000, 2000],
|
||||
"x": [1, 3, 1280, 1280],
|
||||
"conv2d_92.tmp_0": [1, 120, 400, 400],
|
||||
"conv2d_91.tmp_0": [1, 24, 200, 200],
|
||||
"conv2d_59.tmp_0": [1, 96, 400, 400],
|
||||
|
@ -237,16 +237,16 @@ def create_predictor(args, mode, logger):
|
|||
opt_input_shape.update(opt_pact_shape)
|
||||
elif mode == "rec":
|
||||
min_input_shape = {"x": [1, 3, 32, 10]}
|
||||
max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
|
||||
max_input_shape = {"x": [args.rec_batch_num, 3, 32, 1024]}
|
||||
opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
|
||||
elif mode == "cls":
|
||||
min_input_shape = {"x": [1, 3, 48, 10]}
|
||||
max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
|
||||
max_input_shape = {"x": [args.rec_batch_num, 3, 48, 1024]}
|
||||
opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
|
||||
else:
|
||||
min_input_shape = {"x": [1, 3, 10, 10]}
|
||||
max_input_shape = {"x": [1, 3, 1000, 1000]}
|
||||
opt_input_shape = {"x": [1, 3, 500, 500]}
|
||||
max_input_shape = {"x": [1, 3, 512, 512]}
|
||||
opt_input_shape = {"x": [1, 3, 256, 256]}
|
||||
config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
|
||||
opt_input_shape)
|
||||
|
||||
|
|
Loading…
Reference in New Issue