add rec_resnet45
parent
c503dc2f93
commit
37f22e3e33
|
@ -27,7 +27,8 @@ def build_backbone(config, model_type):
|
|||
from .rec_resnet_fpn import ResNetFPN
|
||||
from .rec_mv1_enhance import MobileNetV1Enhance
|
||||
from .rec_nrtr_mtb import MTB
|
||||
from .rec_resnet import ResNet31, ResNet45
|
||||
from .rec_resnet_31 import ResNet31
|
||||
from .rec_resnet_45 import ResNet45
|
||||
from .rec_resnet_aster import ResNet_ASTER
|
||||
from .rec_micronet import MicroNet
|
||||
from .rec_efficientb3_pren import EfficientNetb3_PREN
|
||||
|
|
|
@ -1,280 +0,0 @@
|
|||
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/layers/conv_layer.py
|
||||
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/backbones/resnet31_ocr.py
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import paddle
|
||||
from paddle import ParamAttr
|
||||
from paddle.nn.initializer import KaimingNormal
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
__all__ = ["ResNet31", "ResNet45"]
|
||||
|
||||
|
||||
def conv1x1(in_planes, out_planes, stride=1):
|
||||
return nn.Conv2D(
|
||||
in_planes,
|
||||
out_planes,
|
||||
kernel_size=1,
|
||||
stride=stride,
|
||||
weight_attr=ParamAttr(initializer=KaimingNormal()),
|
||||
bias_attr=False)
|
||||
|
||||
|
||||
def conv3x3(in_channel, out_channel, stride=1):
|
||||
return nn.Conv2D(
|
||||
in_channel,
|
||||
out_channel,
|
||||
kernel_size=3,
|
||||
stride=stride,
|
||||
padding=1,
|
||||
weight_attr=ParamAttr(initializer=KaimingNormal()),
|
||||
bias_attr=False)
|
||||
|
||||
|
||||
class BasicBlock(nn.Layer):
|
||||
expansion = 1
|
||||
|
||||
def __init__(self, in_channels, channels, stride=1, downsample=None):
|
||||
super().__init__()
|
||||
self.conv1 = conv1x1(in_channels, channels)
|
||||
self.bn1 = nn.BatchNorm2D(channels)
|
||||
self.relu = nn.ReLU()
|
||||
self.conv2 = conv3x3(channels, channels, stride)
|
||||
self.bn2 = nn.BatchNorm2D(channels)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(x)
|
||||
out += residual
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNet31(nn.Layer):
|
||||
'''
|
||||
Args:
|
||||
in_channels (int): Number of channels of input image tensor.
|
||||
layers (list[int]): List of BasicBlock number for each stage.
|
||||
channels (list[int]): List of out_channels of Conv2d layer.
|
||||
out_indices (None | Sequence[int]): Indices of output stages.
|
||||
last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage.
|
||||
'''
|
||||
|
||||
def __init__(self,
|
||||
in_channels=3,
|
||||
layers=[1, 2, 5, 3],
|
||||
channels=[64, 128, 256, 256, 512, 512, 512],
|
||||
out_indices=None,
|
||||
last_stage_pool=False):
|
||||
super(ResNet31, self).__init__()
|
||||
assert isinstance(in_channels, int)
|
||||
assert isinstance(last_stage_pool, bool)
|
||||
|
||||
self.out_indices = out_indices
|
||||
self.last_stage_pool = last_stage_pool
|
||||
|
||||
# conv 1 (Conv Conv)
|
||||
self.conv1_1 = nn.Conv2D(
|
||||
in_channels, channels[0], kernel_size=3, stride=1, padding=1)
|
||||
self.bn1_1 = nn.BatchNorm2D(channels[0])
|
||||
self.relu1_1 = nn.ReLU()
|
||||
|
||||
self.conv1_2 = nn.Conv2D(
|
||||
channels[0], channels[1], kernel_size=3, stride=1, padding=1)
|
||||
self.bn1_2 = nn.BatchNorm2D(channels[1])
|
||||
self.relu1_2 = nn.ReLU()
|
||||
|
||||
# conv 2 (Max-pooling, Residual block, Conv)
|
||||
self.pool2 = nn.MaxPool2D(
|
||||
kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
||||
self.block2 = self._make_layer(channels[1], channels[2], layers[0])
|
||||
self.conv2 = nn.Conv2D(
|
||||
channels[2], channels[2], kernel_size=3, stride=1, padding=1)
|
||||
self.bn2 = nn.BatchNorm2D(channels[2])
|
||||
self.relu2 = nn.ReLU()
|
||||
|
||||
# conv 3 (Max-pooling, Residual block, Conv)
|
||||
self.pool3 = nn.MaxPool2D(
|
||||
kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
||||
self.block3 = self._make_layer(channels[2], channels[3], layers[1])
|
||||
self.conv3 = nn.Conv2D(
|
||||
channels[3], channels[3], kernel_size=3, stride=1, padding=1)
|
||||
self.bn3 = nn.BatchNorm2D(channels[3])
|
||||
self.relu3 = nn.ReLU()
|
||||
|
||||
# conv 4 (Max-pooling, Residual block, Conv)
|
||||
self.pool4 = nn.MaxPool2D(
|
||||
kernel_size=(2, 1), stride=(2, 1), padding=0, ceil_mode=True)
|
||||
self.block4 = self._make_layer(channels[3], channels[4], layers[2])
|
||||
self.conv4 = nn.Conv2D(
|
||||
channels[4], channels[4], kernel_size=3, stride=1, padding=1)
|
||||
self.bn4 = nn.BatchNorm2D(channels[4])
|
||||
self.relu4 = nn.ReLU()
|
||||
|
||||
# conv 5 ((Max-pooling), Residual block, Conv)
|
||||
self.pool5 = None
|
||||
if self.last_stage_pool:
|
||||
self.pool5 = nn.MaxPool2D(
|
||||
kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
||||
self.block5 = self._make_layer(channels[4], channels[5], layers[3])
|
||||
self.conv5 = nn.Conv2D(
|
||||
channels[5], channels[5], kernel_size=3, stride=1, padding=1)
|
||||
self.bn5 = nn.BatchNorm2D(channels[5])
|
||||
self.relu5 = nn.ReLU()
|
||||
|
||||
self.out_channels = channels[-1]
|
||||
|
||||
def _make_layer(self, input_channels, output_channels, blocks):
|
||||
layers = []
|
||||
for _ in range(blocks):
|
||||
downsample = None
|
||||
if input_channels != output_channels:
|
||||
downsample = nn.Sequential(
|
||||
nn.Conv2D(
|
||||
input_channels,
|
||||
output_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
weight_attr=ParamAttr(initializer=KaimingNormal()),
|
||||
bias_attr=False),
|
||||
nn.BatchNorm2D(output_channels), )
|
||||
|
||||
layers.append(
|
||||
BasicBlock(
|
||||
input_channels, output_channels, downsample=downsample))
|
||||
input_channels = output_channels
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1_1(x)
|
||||
x = self.bn1_1(x)
|
||||
x = self.relu1_1(x)
|
||||
|
||||
x = self.conv1_2(x)
|
||||
x = self.bn1_2(x)
|
||||
x = self.relu1_2(x)
|
||||
|
||||
outs = []
|
||||
for i in range(4):
|
||||
layer_index = i + 2
|
||||
pool_layer = getattr(self, f'pool{layer_index}')
|
||||
block_layer = getattr(self, f'block{layer_index}')
|
||||
conv_layer = getattr(self, f'conv{layer_index}')
|
||||
bn_layer = getattr(self, f'bn{layer_index}')
|
||||
relu_layer = getattr(self, f'relu{layer_index}')
|
||||
|
||||
if pool_layer is not None:
|
||||
x = pool_layer(x)
|
||||
x = block_layer(x)
|
||||
x = conv_layer(x)
|
||||
x = bn_layer(x)
|
||||
x = relu_layer(x)
|
||||
|
||||
outs.append(x)
|
||||
|
||||
if self.out_indices is not None:
|
||||
return tuple([outs[i] for i in self.out_indices])
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class ResNet(nn.Layer):
|
||||
def __init__(self, block, layers, in_channels=3):
|
||||
self.inplanes = 32
|
||||
super(ResNet, self).__init__()
|
||||
self.conv1 = nn.Conv2D(
|
||||
3,
|
||||
32,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
weight_attr=ParamAttr(initializer=KaimingNormal()),
|
||||
bias_attr=False)
|
||||
self.bn1 = nn.BatchNorm2D(32)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
self.layer1 = self._make_layer(block, 32, layers[0], stride=2)
|
||||
self.layer2 = self._make_layer(block, 64, layers[1], stride=1)
|
||||
self.layer3 = self._make_layer(block, 128, layers[2], stride=2)
|
||||
self.layer4 = self._make_layer(block, 256, layers[3], stride=1)
|
||||
self.layer5 = self._make_layer(block, 512, layers[4], stride=1)
|
||||
self.out_channels = 512
|
||||
|
||||
# for m in self.modules():
|
||||
# if isinstance(m, nn.Conv2D):
|
||||
# n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
|
||||
# m.weight.data.normal_(0, math.sqrt(2. / n))
|
||||
|
||||
def _make_layer(self, block, planes, blocks, stride=1):
|
||||
downsample = None
|
||||
if stride != 1 or self.inplanes != planes * block.expansion:
|
||||
# downsample = True
|
||||
downsample = nn.Sequential(
|
||||
nn.Conv2D(
|
||||
self.inplanes,
|
||||
planes * block.expansion,
|
||||
kernel_size=1,
|
||||
stride=stride,
|
||||
weight_attr=ParamAttr(initializer=KaimingNormal()),
|
||||
bias_attr=False),
|
||||
nn.BatchNorm2D(planes * block.expansion), )
|
||||
|
||||
layers = []
|
||||
layers.append(block(self.inplanes, planes, stride, downsample))
|
||||
self.inplanes = planes * block.expansion
|
||||
for i in range(1, blocks):
|
||||
layers.append(block(self.inplanes, planes))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
x = self.conv1(x)
|
||||
x = self.bn1(x)
|
||||
x = self.relu(x)
|
||||
# print(x)
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
# print(x)
|
||||
x = self.layer4(x)
|
||||
x = self.layer5(x)
|
||||
return x
|
||||
|
||||
|
||||
def ResNet45(in_channels=3):
|
||||
return ResNet(BasicBlock, [3, 4, 6, 6, 3], in_channels=in_channels)
|
|
@ -0,0 +1,147 @@
|
|||
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/FangShancheng/ABINet/tree/main/modules
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import paddle
|
||||
from paddle import ParamAttr
|
||||
from paddle.nn.initializer import KaimingNormal
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
__all__ = ["ResNet45"]
|
||||
|
||||
|
||||
def conv1x1(in_planes, out_planes, stride=1):
|
||||
return nn.Conv2D(
|
||||
in_planes,
|
||||
out_planes,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
weight_attr=ParamAttr(initializer=KaimingNormal()),
|
||||
bias_attr=False)
|
||||
|
||||
|
||||
def conv3x3(in_channel, out_channel, stride=1):
|
||||
return nn.Conv2D(
|
||||
in_channel,
|
||||
out_channel,
|
||||
kernel_size=3,
|
||||
stride=stride,
|
||||
padding=1,
|
||||
weight_attr=ParamAttr(initializer=KaimingNormal()),
|
||||
bias_attr=False)
|
||||
|
||||
|
||||
class BasicBlock(nn.Layer):
|
||||
expansion = 1
|
||||
|
||||
def __init__(self, in_channels, channels, stride=1, downsample=None):
|
||||
super().__init__()
|
||||
self.conv1 = conv1x1(in_channels, channels)
|
||||
self.bn1 = nn.BatchNorm2D(channels)
|
||||
self.relu = nn.ReLU()
|
||||
self.conv2 = conv3x3(channels, channels, stride)
|
||||
self.bn2 = nn.BatchNorm2D(channels)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(x)
|
||||
out += residual
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNet45(nn.Layer):
|
||||
def __init__(self, block=BasicBlock, layers=[3, 4, 6, 6, 3], in_channels=3):
|
||||
self.inplanes = 32
|
||||
super(ResNet45, self).__init__()
|
||||
self.conv1 = nn.Conv2D(
|
||||
3,
|
||||
32,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
weight_attr=ParamAttr(initializer=KaimingNormal()),
|
||||
bias_attr=False)
|
||||
self.bn1 = nn.BatchNorm2D(32)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
self.layer1 = self._make_layer(block, 32, layers[0], stride=2)
|
||||
self.layer2 = self._make_layer(block, 64, layers[1], stride=1)
|
||||
self.layer3 = self._make_layer(block, 128, layers[2], stride=2)
|
||||
self.layer4 = self._make_layer(block, 256, layers[3], stride=1)
|
||||
self.layer5 = self._make_layer(block, 512, layers[4], stride=1)
|
||||
self.out_channels = 512
|
||||
|
||||
# for m in self.modules():
|
||||
# if isinstance(m, nn.Conv2D):
|
||||
# n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
|
||||
# m.weight.data.normal_(0, math.sqrt(2. / n))
|
||||
|
||||
def _make_layer(self, block, planes, blocks, stride=1):
|
||||
downsample = None
|
||||
if stride != 1 or self.inplanes != planes * block.expansion:
|
||||
# downsample = True
|
||||
downsample = nn.Sequential(
|
||||
nn.Conv2D(
|
||||
self.inplanes,
|
||||
planes * block.expansion,
|
||||
kernel_size=1,
|
||||
stride=stride,
|
||||
weight_attr=ParamAttr(initializer=KaimingNormal()),
|
||||
bias_attr=False),
|
||||
nn.BatchNorm2D(planes * block.expansion), )
|
||||
|
||||
layers = []
|
||||
layers.append(block(self.inplanes, planes, stride, downsample))
|
||||
self.inplanes = planes * block.expansion
|
||||
for i in range(1, blocks):
|
||||
layers.append(block(self.inplanes, planes))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
x = self.conv1(x)
|
||||
x = self.bn1(x)
|
||||
x = self.relu(x)
|
||||
# print(x)
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
# print(x)
|
||||
x = self.layer4(x)
|
||||
x = self.layer5(x)
|
||||
return x
|
Loading…
Reference in New Issue