commit
42230e04e9
test_tipc
configs
det_r50_vd_sast_icdar15_v2.0
en_server_pgnetA
tools/infer
|
@ -62,7 +62,7 @@ Train:
|
|||
data_dir: ./train_data/icdar2015/text_localization/
|
||||
label_file_list:
|
||||
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
|
||||
ratio_list: [0.1, 0.45, 0.3, 0.15]
|
||||
ratio_list: [1.0]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
|
|
|
@ -4,7 +4,7 @@ python:python3.7
|
|||
gpu_list:0|0,1
|
||||
Global.use_gpu:True|True
|
||||
Global.auto_cast:null
|
||||
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=500
|
||||
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=500
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=14
|
||||
Global.pretrained_model:null
|
||||
|
@ -42,7 +42,7 @@ inference:tools/infer/predict_e2e.py
|
|||
--enable_mkldnn:True|False
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1
|
||||
--use_tensorrt:False|True
|
||||
--use_tensorrt:False
|
||||
--precision:fp32|fp16|int8
|
||||
--e2e_model_dir:
|
||||
--image_dir:./inference/ch_det_data_50/all-sum-510/
|
||||
|
|
|
@ -25,7 +25,7 @@ if [ ${MODE} = "lite_train_lite_infer" ];then
|
|||
# pretrain lite train data
|
||||
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams --no-check-certificate
|
||||
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar --no-check-certificate
|
||||
if [ ${model_name} == "ch_PPOCRv2_det" ]; then
|
||||
if [ ${model_name} =~ "ch_PPOCRv2_det" ]; then
|
||||
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar --no-check-certificate
|
||||
cd ./pretrain_models/ && tar xf ch_PP-OCRv2_det_distill_train.tar && cd ../
|
||||
fi
|
||||
|
@ -50,7 +50,7 @@ if [ ${MODE} = "lite_train_lite_infer" ];then
|
|||
if [ ${model_name} == "det_r50_vd_sast_icdar15_v2.0" ] || [ ${model_name} == "det_r50_vd_sast_totaltext_v2.0" ]; then
|
||||
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams --no-check-certificate
|
||||
wget -nc -P ./train_data/ wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/total_text_lite.tar --no-check-certificate
|
||||
cd ./train_data && tar xf total_text_lite.tar && ln -s total_text && cd ../
|
||||
cd ./train_data && tar xf total_text_lite.tar && ln -s total_text_lite total_text && cd ../
|
||||
fi
|
||||
if [ ${model_name} == "det_mv3_db_v2.0" ]; then
|
||||
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar --no-check-certificate
|
||||
|
@ -78,15 +78,15 @@ elif [ ${MODE} = "whole_train_whole_infer" ];then
|
|||
cd ./pretrain_models/ && tar xf ch_PP-OCRv2_det_distill_train.tar && cd ../
|
||||
fi
|
||||
if [ ${model_name} == "en_server_pgnetA" ]; then
|
||||
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dataset/total_text.tar --no-check-certificate
|
||||
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/total_text_lite.tar --no-check-certificate
|
||||
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar --no-check-certificate
|
||||
cd ./pretrain_models/ && tar xf en_server_pgnetA.tar && cd ../
|
||||
cd ./train_data && tar xf total_text.tar && ln -s total_text && cd ../
|
||||
cd ./train_data && tar xf total_text.tar && ln -s total_text_lite total_text && cd ../
|
||||
fi
|
||||
if [ ${model_name} == "det_r50_vd_sast_totaltext_v2.0" ]; then
|
||||
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams --no-check-certificate
|
||||
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dataset/total_text.tar --no-check-certificate
|
||||
cd ./train_data && tar xf total_text.tar && ln -s total_text && cd ../
|
||||
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/total_text_lite.tar --no-check-certificate
|
||||
cd ./train_data && tar xf total_text.tar && ln -s total_text_lite total_text && cd ../
|
||||
fi
|
||||
elif [ ${MODE} = "lite_train_whole_infer" ];then
|
||||
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams --no-check-certificate
|
||||
|
@ -135,7 +135,7 @@ elif [ ${MODE} = "whole_infer" ];then
|
|||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar --no-check-certificate
|
||||
cd ./inference && tar xf ${eval_model_name}.tar && tar xf rec_inference.tar && cd ../
|
||||
fi
|
||||
if [ ${model_name} = "ch_PPOCRv2_det" ]; then
|
||||
if [ ${model_name} =~ "ch_PPOCRv2_det" ]; then
|
||||
eval_model_name="ch_PP-OCRv2_det_infer"
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
|
||||
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar --no-check-certificate
|
||||
|
|
|
@ -195,6 +195,7 @@ def create_predictor(args, mode, logger):
|
|||
max_batch_size=args.max_batch_size,
|
||||
min_subgraph_size=args.min_subgraph_size)
|
||||
# skip the minmum trt subgraph
|
||||
use_dynamic_shape = True
|
||||
if mode == "det":
|
||||
min_input_shape = {
|
||||
"x": [1, 3, 50, 50],
|
||||
|
@ -260,6 +261,8 @@ def create_predictor(args, mode, logger):
|
|||
max_input_shape.update(max_pact_shape)
|
||||
opt_input_shape.update(opt_pact_shape)
|
||||
elif mode == "rec":
|
||||
if args.rec_algorithm != "CRNN":
|
||||
use_dynamic_shape = False
|
||||
min_input_shape = {"x": [1, 3, 32, 10]}
|
||||
max_input_shape = {"x": [args.rec_batch_num, 3, 32, 1536]}
|
||||
opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
|
||||
|
@ -268,14 +271,8 @@ def create_predictor(args, mode, logger):
|
|||
max_input_shape = {"x": [args.rec_batch_num, 3, 48, 1024]}
|
||||
opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
|
||||
else:
|
||||
min_input_shape = {"x": [1, 3, 10, 10]}
|
||||
max_input_shape = {"x": [1, 3, 512, 512]}
|
||||
opt_input_shape = {"x": [1, 3, 256, 256]}
|
||||
if mode == "rec":
|
||||
if args.rec_algorithm == "CRNN":
|
||||
config.set_trt_dynamic_shape_info(
|
||||
min_input_shape, max_input_shape, opt_input_shape)
|
||||
else:
|
||||
use_dynamic_shape = False
|
||||
if use_dynamic_shape:
|
||||
config.set_trt_dynamic_shape_info(
|
||||
min_input_shape, max_input_shape, opt_input_shape)
|
||||
|
||||
|
|
Loading…
Reference in New Issue