fix table recogition benckmark error
parent
4078b0fee8
commit
4cf04cbee8
|
@ -68,6 +68,7 @@ def build_pre_process_list(args):
|
|||
|
||||
class TableStructurer(object):
|
||||
def __init__(self, args):
|
||||
self.args = args
|
||||
self.use_onnx = args.use_onnx
|
||||
pre_process_list = build_pre_process_list(args)
|
||||
if args.table_algorithm not in ['TableMaster']:
|
||||
|
@ -89,8 +90,31 @@ class TableStructurer(object):
|
|||
self.predictor, self.input_tensor, self.output_tensors, self.config = \
|
||||
utility.create_predictor(args, 'table', logger)
|
||||
|
||||
if args.benchmark:
|
||||
import auto_log
|
||||
pid = os.getpid()
|
||||
gpu_id = utility.get_infer_gpuid()
|
||||
self.autolog = auto_log.AutoLogger(
|
||||
model_name="table",
|
||||
model_precision=args.precision,
|
||||
batch_size=1,
|
||||
data_shape="dynamic",
|
||||
save_path=None, #args.save_log_path,
|
||||
inference_config=self.config,
|
||||
pids=pid,
|
||||
process_name=None,
|
||||
gpu_ids=gpu_id if args.use_gpu else None,
|
||||
time_keys=[
|
||||
'preprocess_time', 'inference_time', 'postprocess_time'
|
||||
],
|
||||
warmup=0,
|
||||
logger=logger)
|
||||
|
||||
def __call__(self, img):
|
||||
starttime = time.time()
|
||||
if self.args.benchmark:
|
||||
self.autolog.times.start()
|
||||
|
||||
ori_im = img.copy()
|
||||
data = {'image': img}
|
||||
data = transform(data, self.preprocess_op)
|
||||
|
@ -99,6 +123,8 @@ class TableStructurer(object):
|
|||
return None, 0
|
||||
img = np.expand_dims(img, axis=0)
|
||||
img = img.copy()
|
||||
if self.args.benchmark:
|
||||
self.autolog.times.stamp()
|
||||
if self.use_onnx:
|
||||
input_dict = {}
|
||||
input_dict[self.input_tensor.name] = img
|
||||
|
@ -110,6 +136,8 @@ class TableStructurer(object):
|
|||
for output_tensor in self.output_tensors:
|
||||
output = output_tensor.copy_to_cpu()
|
||||
outputs.append(output)
|
||||
if self.args.benchmark:
|
||||
self.autolog.times.stamp()
|
||||
|
||||
preds = {}
|
||||
preds['structure_probs'] = outputs[1]
|
||||
|
@ -125,6 +153,8 @@ class TableStructurer(object):
|
|||
'<html>', '<body>', '<table>'
|
||||
] + structure_str_list + ['</table>', '</body>', '</html>']
|
||||
elapse = time.time() - starttime
|
||||
if self.args.benchmark:
|
||||
self.autolog.times.end(stamp=True)
|
||||
return (structure_str_list, bbox_list), elapse
|
||||
|
||||
|
||||
|
@ -164,6 +194,8 @@ def main(args):
|
|||
total_time += elapse
|
||||
count += 1
|
||||
logger.info("Predict time of {}: {}".format(image_file, elapse))
|
||||
if args.benchmark:
|
||||
table_structurer.autolog.report()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -14,7 +14,6 @@
|
|||
|
||||
import os
|
||||
import sys
|
||||
import subprocess
|
||||
|
||||
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append(__dir__)
|
||||
|
@ -61,57 +60,31 @@ class TableSystem(object):
|
|||
self.args = args
|
||||
if not args.show_log:
|
||||
logger.setLevel(logging.INFO)
|
||||
|
||||
self.text_detector = predict_det.TextDetector(
|
||||
args) if text_detector is None else text_detector
|
||||
self.text_recognizer = predict_rec.TextRecognizer(
|
||||
args) if text_recognizer is None else text_recognizer
|
||||
|
||||
args.benchmark = False
|
||||
self.text_detector = predict_det.TextDetector(copy.deepcopy(
|
||||
args)) if text_detector is None else text_detector
|
||||
self.text_recognizer = predict_rec.TextRecognizer(copy.deepcopy(
|
||||
args)) if text_recognizer is None else text_recognizer
|
||||
args.benchmark = True
|
||||
self.table_structurer = predict_strture.TableStructurer(args)
|
||||
if args.table_algorithm in ['TableMaster']:
|
||||
self.match = TableMasterMatcher()
|
||||
else:
|
||||
self.match = TableMatch(filter_ocr_result=True)
|
||||
|
||||
self.benchmark = args.benchmark
|
||||
self.predictor, self.input_tensor, self.output_tensors, self.config = utility.create_predictor(
|
||||
args, 'table', logger)
|
||||
if args.benchmark:
|
||||
import auto_log
|
||||
pid = os.getpid()
|
||||
gpu_id = utility.get_infer_gpuid()
|
||||
self.autolog = auto_log.AutoLogger(
|
||||
model_name="table",
|
||||
model_precision=args.precision,
|
||||
batch_size=1,
|
||||
data_shape="dynamic",
|
||||
save_path=None, #args.save_log_path,
|
||||
inference_config=self.config,
|
||||
pids=pid,
|
||||
process_name=None,
|
||||
gpu_ids=gpu_id if args.use_gpu else None,
|
||||
time_keys=[
|
||||
'preprocess_time', 'inference_time', 'postprocess_time'
|
||||
],
|
||||
warmup=0,
|
||||
logger=logger)
|
||||
|
||||
def __call__(self, img, return_ocr_result_in_table=False):
|
||||
result = dict()
|
||||
time_dict = {'det': 0, 'rec': 0, 'table': 0, 'all': 0, 'match': 0}
|
||||
start = time.time()
|
||||
if self.args.benchmark:
|
||||
self.autolog.times.start()
|
||||
structure_res, elapse = self._structure(copy.deepcopy(img))
|
||||
if self.benchmark:
|
||||
self.autolog.times.stamp()
|
||||
result['cell_bbox'] = structure_res[1].tolist()
|
||||
time_dict['table'] = elapse
|
||||
|
||||
dt_boxes, rec_res, det_elapse, rec_elapse = self._ocr(
|
||||
copy.deepcopy(img))
|
||||
if self.benchmark:
|
||||
self.autolog.times.stamp()
|
||||
time_dict['det'] = det_elapse
|
||||
time_dict['rec'] = rec_elapse
|
||||
|
||||
|
@ -126,8 +99,6 @@ class TableSystem(object):
|
|||
result['html'] = pred_html
|
||||
end = time.time()
|
||||
time_dict['all'] = end - start
|
||||
if self.benchmark:
|
||||
self.autolog.times.end(stamp=True)
|
||||
return result, time_dict
|
||||
|
||||
def _structure(self, img):
|
||||
|
@ -233,12 +204,13 @@ def main(args):
|
|||
f_html.close()
|
||||
|
||||
if args.benchmark:
|
||||
table_sys.autolog.report()
|
||||
table_sys.table_structurer.autolog.report()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parse_args()
|
||||
if args.use_mp:
|
||||
import subprocess
|
||||
p_list = []
|
||||
total_process_num = args.total_process_num
|
||||
for process_id in range(total_process_num):
|
||||
|
|
Loading…
Reference in New Issue