update
parent
ff446b76c9
commit
54cf006883
|
@ -12,14 +12,14 @@
|
|||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "crnn_process.h" //NOLINT
|
||||
#include "crnn_process.h" //NOLINT
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
|
||||
const std::vector<int> rec_image_shape{3, 32, 320};
|
||||
|
||||
cv::Mat CrnnResizeNormImg(cv::Mat img, float wh_ratio) {
|
||||
cv::Mat CrnnResizeNormImg(cv::Mat img, float wh_ratio, bool is_norm) {
|
||||
int imgC, imgH, imgW;
|
||||
imgC = rec_image_shape[0];
|
||||
imgW = rec_image_shape[2];
|
||||
|
@ -34,54 +34,31 @@ cv::Mat CrnnResizeNormImg(cv::Mat img, float wh_ratio) {
|
|||
else
|
||||
resize_w = int(ceilf(imgH * ratio));
|
||||
cv::Mat resize_img;
|
||||
cv::resize(
|
||||
img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f, cv::INTER_CUBIC);
|
||||
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
|
||||
cv::INTER_LINEAR);
|
||||
|
||||
resize_img.convertTo(resize_img, CV_32FC3, 1 / 255.f);
|
||||
if (!is_norm) {
|
||||
return resize_img;
|
||||
} else {
|
||||
resize_img.convertTo(resize_img, CV_32FC3, 1 / 255.f);
|
||||
|
||||
for (int h = 0; h < resize_img.rows; h++) {
|
||||
for (int w = 0; w < resize_img.cols; w++) {
|
||||
resize_img.at<cv::Vec3f>(h, w)[0] =
|
||||
(resize_img.at<cv::Vec3f>(h, w)[0] - 0.5) * 2;
|
||||
resize_img.at<cv::Vec3f>(h, w)[1] =
|
||||
(resize_img.at<cv::Vec3f>(h, w)[1] - 0.5) * 2;
|
||||
resize_img.at<cv::Vec3f>(h, w)[2] =
|
||||
(resize_img.at<cv::Vec3f>(h, w)[2] - 0.5) * 2;
|
||||
for (int h = 0; h < resize_img.rows; h++) {
|
||||
for (int w = 0; w < resize_img.cols; w++) {
|
||||
resize_img.at<cv::Vec3f>(h, w)[0] =
|
||||
(resize_img.at<cv::Vec3f>(h, w)[0] - 0.5) * 2;
|
||||
resize_img.at<cv::Vec3f>(h, w)[1] =
|
||||
(resize_img.at<cv::Vec3f>(h, w)[1] - 0.5) * 2;
|
||||
resize_img.at<cv::Vec3f>(h, w)[2] =
|
||||
(resize_img.at<cv::Vec3f>(h, w)[2] - 0.5) * 2;
|
||||
}
|
||||
}
|
||||
|
||||
cv::Mat dist;
|
||||
cv::copyMakeBorder(resize_img, dist, 0, 0, 0, int(imgW - resize_w),
|
||||
cv::BORDER_CONSTANT, {0, 0, 0});
|
||||
|
||||
return dist;
|
||||
}
|
||||
|
||||
cv::Mat dist;
|
||||
cv::copyMakeBorder(resize_img,
|
||||
dist,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
int(imgW - resize_w),
|
||||
cv::BORDER_CONSTANT,
|
||||
{0, 0, 0});
|
||||
|
||||
return dist;
|
||||
}
|
||||
|
||||
cv::Mat CrnnResizeImg(cv::Mat img, float wh_ratio) {
|
||||
int imgC, imgH, imgW;
|
||||
imgC = rec_image_shape[0];
|
||||
imgW = rec_image_shape[2];
|
||||
imgH = rec_image_shape[1];
|
||||
|
||||
imgW = int(32 * wh_ratio);
|
||||
|
||||
float ratio = float(img.cols) / float(img.rows);
|
||||
int resize_w, resize_h;
|
||||
if (ceilf(imgH * ratio) > imgW)
|
||||
resize_w = imgW;
|
||||
else
|
||||
resize_w = int(ceilf(imgH * ratio));
|
||||
cv::Mat resize_img;
|
||||
cv::resize(
|
||||
img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f, cv::INTER_LINEAR);
|
||||
|
||||
return resize_img;
|
||||
}
|
||||
|
||||
std::vector<std::string> ReadDict(std::string path) {
|
||||
|
@ -140,9 +117,7 @@ cv::Mat GetRotateCropImage(cv::Mat srcimage,
|
|||
cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);
|
||||
|
||||
cv::Mat dst_img;
|
||||
cv::warpPerspective(img_crop,
|
||||
dst_img,
|
||||
M,
|
||||
cv::warpPerspective(img_crop, dst_img, M,
|
||||
cv::Size(img_crop_width, img_crop_height),
|
||||
cv::BORDER_REPLICATE);
|
||||
|
||||
|
|
|
@ -21,14 +21,12 @@
|
|||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "math.h" //NOLINT
|
||||
#include "math.h" //NOLINT
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
|
||||
cv::Mat CrnnResizeNormImg(cv::Mat img, float wh_ratio);
|
||||
|
||||
cv::Mat CrnnResizeImg(cv::Mat img, float wh_ratio);
|
||||
cv::Mat CrnnResizeNormImg(cv::Mat img, float wh_ratio, bool is_norm);
|
||||
|
||||
std::vector<std::string> ReadDict(std::string path);
|
||||
|
||||
|
|
|
@ -276,4 +276,4 @@ FilterTagDetRes(std::vector<std::vector<std::vector<int>>> boxes, float ratio_h,
|
|||
root_points.push_back(boxes[n]);
|
||||
}
|
||||
return root_points;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -107,8 +107,9 @@ cv::Mat DetResizeImg(const cv::Mat img, int max_size_len,
|
|||
|
||||
void RunRecModel(std::vector<std::vector<std::vector<int>>> boxes, cv::Mat img,
|
||||
std::shared_ptr<PaddlePredictor> predictor_crnn,
|
||||
std::string dict_path, std::vector<std::string> &rec_text,
|
||||
std::vector<float> &rec_text_score) {
|
||||
std::vector<std::string> &rec_text,
|
||||
std::vector<float> &rec_text_score,
|
||||
std::vector<std::string> charactor_dict) {
|
||||
std::vector<float> mean = {0.5f, 0.5f, 0.5f};
|
||||
std::vector<float> scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};
|
||||
|
||||
|
@ -117,14 +118,12 @@ void RunRecModel(std::vector<std::vector<std::vector<int>>> boxes, cv::Mat img,
|
|||
cv::Mat crop_img;
|
||||
cv::Mat resize_img;
|
||||
|
||||
auto charactor_dict = ReadDict(dict_path);
|
||||
|
||||
int index = 0;
|
||||
for (int i = boxes.size() - 1; i >= 0; i--) {
|
||||
crop_img = GetRotateCropImage(srcimg, boxes[i]);
|
||||
float wh_ratio = float(crop_img.cols) / float(crop_img.rows);
|
||||
|
||||
resize_img = CrnnResizeImg(crop_img, wh_ratio);
|
||||
resize_img = CrnnResizeNormImg(crop_img, wh_ratio, false);
|
||||
resize_img.convertTo(resize_img, CV_32FC3, 1 / 255.f);
|
||||
|
||||
const float *dimg = reinterpret_cast<const float *>(resize_img.data);
|
||||
|
@ -227,13 +226,12 @@ RunDetModel(std::shared_ptr<PaddlePredictor> predictor, cv::Mat img,
|
|||
auto shape_out = output_tensor->shape();
|
||||
|
||||
// Save output
|
||||
float pred[shape_out[2]][shape_out[3]];
|
||||
unsigned char cbuf[shape_out[2]][shape_out[3]];
|
||||
float pred[shape_out[2] * shape_out[3]];
|
||||
unsigned char cbuf[shape_out[2] * shape_out[3]];
|
||||
|
||||
for (int i = 0; i < int(shape_out[2] * shape_out[3]); i++) {
|
||||
pred[int(i / int(shape_out[3]))][int(i % shape_out[3])] = float(outptr[i]);
|
||||
cbuf[int(i / int(shape_out[3]))][int(i % shape_out[3])] =
|
||||
(unsigned char)((outptr[i]) * 255);
|
||||
pred[i] = float(outptr[i]);
|
||||
cbuf[i] = (unsigned char)((outptr[i]) * 255);
|
||||
}
|
||||
|
||||
cv::Mat cbuf_map(shape_out[2], shape_out[3], CV_8UC1, (unsigned char *)cbuf);
|
||||
|
@ -333,13 +331,15 @@ int main(int argc, char **argv) {
|
|||
auto det_predictor = loadModel(det_model_file);
|
||||
auto rec_predictor = loadModel(rec_model_file);
|
||||
|
||||
auto charactor_dict = ReadDict(dict_path);
|
||||
|
||||
cv::Mat srcimg = cv::imread(img_path, cv::IMREAD_COLOR);
|
||||
auto boxes = RunDetModel(det_predictor, srcimg, Config);
|
||||
|
||||
std::vector<std::string> rec_text;
|
||||
std::vector<float> rec_text_score;
|
||||
RunRecModel(boxes, srcimg, rec_predictor, dict_path, rec_text,
|
||||
rec_text_score);
|
||||
RunRecModel(boxes, srcimg, rec_predictor, rec_text, rec_text_score,
|
||||
charactor_dict);
|
||||
|
||||
auto end = std::chrono::system_clock::now();
|
||||
auto duration =
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
# PaddleOCR 模型部署
|
||||
# PaddleOCR 端侧模型部署
|
||||
|
||||
PaddleOCR是集训练、预测、端侧部署于一体的实用OCR工具库。本教程将介绍在安卓移动端部署PaddleOCR超轻量中文检测、识别模型的主要流程。
|
||||
本教程将介绍在移动端部署PaddleOCR超轻量中文检测、识别模型的详细步骤。
|
||||
|
||||
|
||||
## 1. 准备环境
|
||||
|
@ -159,6 +159,7 @@ demo/cxx/ocr/
|
|||
| |--11.jpg 待测试图像
|
||||
| |--ppocr_keys_v1.txt 字典文件
|
||||
| |--libpaddle_light_api_shared.so C++预测库文件
|
||||
| |--config.txt DB-CRNN超参数配置
|
||||
|-- config.txt DB-CRNN超参数配置
|
||||
|-- crnn_process.cc 识别模型CRNN的预处理和后处理文件
|
||||
|-- crnn_process.h
|
||||
|
|
Loading…
Reference in New Issue