update install
parent
9be9fe8d42
commit
55121d1635
|
@ -1,13 +1,15 @@
|
|||
|
||||
## 环境配置
|
||||
## 1. 环境准备
|
||||
|
||||
本教程适用于PTDN目录下基础功能测试的运行环境搭建。
|
||||
|
||||
推荐环境:
|
||||
- CUDA 10.1
|
||||
- CUDNN 7.6
|
||||
- TensorRT 6.1.0.5 / 7.1
|
||||
- CUDA 10.1/10.2
|
||||
- CUDNN 7.6/cudnn8.1
|
||||
- TensorRT 6.1.0.5 / 7.1 / 7.2
|
||||
|
||||
环境配置可以选择docker镜像安装,或者在本地环境Python搭建环境。推荐使用docker镜像安装,避免不必要的环境配置。
|
||||
|
||||
## 2. Docker 镜像安装
|
||||
|
||||
推荐docker镜像安装,按照如下命令创建镜像,当前目录映射到镜像中的`/paddle`目录下
|
||||
```
|
||||
|
@ -16,7 +18,80 @@ cd /paddle
|
|||
|
||||
# 安装带TRT的paddle
|
||||
pip3.7 install https://paddle-wheel.bj.bcebos.com/with-trt/2.1.3/linux-gpu-cuda10.1-cudnn7-mkl-gcc8.2-trt6-avx/paddlepaddle_gpu-2.1.3.post101-cp37-cp37m-linux_x86_64.whl
|
||||
```
|
||||
|
||||
## 3 Python 环境构建
|
||||
|
||||
非docker环境下,环境配置比较灵活,推荐环境组合配置:
|
||||
- CUDA10.1 + CUDNN7.6 + TensorRT 6
|
||||
- CUDA10.2 + CUDNN8.1 + TensorRT 7
|
||||
- CUDA11.1 + CUDNN8.1 + TensorRT 7
|
||||
|
||||
下面以 CUDA10.2 + CUDNN8.1 + TensorRT 7 配置为例,介绍环境配置的流程。
|
||||
|
||||
### 3.1 安装CUDNN
|
||||
|
||||
如果当前环境满足CUDNN版本的要求,可以跳过此步骤。
|
||||
|
||||
以CUDNN8.1 安装安装为例,安装步骤如下,首先下载CUDNN,从[Nvidia官网](https://developer.nvidia.com/rdp/cudnn-archive)下载CUDNN8.1版本,下载符合当前系统版本的三个deb文件,分别是:
|
||||
- cuDNN Runtime Library ,如:libcudnn8_8.1.0.77-1+cuda10.2_amd64.deb
|
||||
- cuDNN Developer Library ,如:libcudnn8-dev_8.1.0.77-1+cuda10.2_amd64.deb
|
||||
- cuDNN Code Samples,如:libcudnn8-samples_8.1.0.77-1+cuda10.2_amd64.deb
|
||||
|
||||
deb安装可以参考[官方文档](https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#installlinux-deb),安装方式如下
|
||||
```
|
||||
# x.x.x表示下载的版本号
|
||||
# $HOME为工作目录
|
||||
sudo dpkg -i libcudnn8_x.x.x-1+cudax.x_arm64.deb
|
||||
sudo dpkg -i libcudnn8-dev_8.x.x.x-1+cudax.x_arm64.deb
|
||||
sudo dpkg -i libcudnn8-samples_8.x.x.x-1+cudax.x_arm64.deb
|
||||
|
||||
# 验证是否正确安装
|
||||
cp -r /usr/src/cudnn_samples_v8/ $HOME
|
||||
cd $HOME/cudnn_samples_v8/mnistCUDNN
|
||||
|
||||
# 编译
|
||||
make clean && make
|
||||
./mnistCUDNN
|
||||
```
|
||||
如果运行mnistCUDNN完后提示运行成功,则表示安装成功。如果运行后出现freeimage相关的报错,需要按照提示安装freeimage库:
|
||||
```
|
||||
sudo apt-get install libfreeimage-dev
|
||||
sudo apt-get install libfreeimage
|
||||
```
|
||||
|
||||
### 3.2 安装TensorRT
|
||||
|
||||
首先,从[Nvidia官网TensorRT板块](https://developer.nvidia.com/tensorrt-getting-started)下载TensorRT,这里选择7.1.3.4版本的TensorRT,注意选择适合自己系统版本和CUDA版本的TensorRT,另外建议下载TAR package的安装包。
|
||||
|
||||
以Ubuntu16.04+CUDA10.2为例,下载并解压后可以参考[官方文档](https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-713/install-guide/index.html#installing-tar)的安装步骤,按照如下步骤安装:
|
||||
```
|
||||
# 以下安装命令中 '${version}' 为下载的TensorRT版本,如7.1.3.4
|
||||
# 设置环境变量,<TensorRT-${version}/lib> 为解压后的TensorRT的lib目录
|
||||
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<TensorRT-${version}/lib>
|
||||
|
||||
# 安装TensorRT
|
||||
cd TensorRT-${version}/python
|
||||
pip3.7 install tensorrt-*-cp3x-none-linux_x86_64.whl
|
||||
|
||||
# 安装graphsurgeon
|
||||
cd TensorRT-${version}/graphsurgeon
|
||||
```
|
||||
|
||||
|
||||
### 3.3 安装PaddlePaddle
|
||||
|
||||
|
||||
安装的TensorRT版本需要和Paddle安装包中编译进去的TensorRT版本进行对应,带TensorRT的Paddle安装包可以从[链接](https://paddleinference.paddlepaddle.org.cn/user_guides/download_lib.html#python)下载带TRT的paddle:
|
||||
这里选择下载 linux-cuda10.2-trt7-gcc8.2 Python3.7版本的Paddle:
|
||||
```
|
||||
# 从下载链接中可以看到是paddle2.1.1-cuda10.2-cudnn8.1版本
|
||||
wget https://paddle-wheel.bj.bcebos.com/with-trt/2.1.1-gpu-cuda10.2-cudnn8.1-mkl-gcc8.2/paddlepaddle_gpu-2.1.1-cp37-cp37m-linux_x86_64.whl
|
||||
pip3.7 install -U paddlepaddle_gpu-2.1.1-cp37-cp37m-linux_x86_64.whl
|
||||
```
|
||||
|
||||
## 4. 安装PaddleOCR依赖
|
||||
```
|
||||
# 安装AutoLog
|
||||
git clone https://github.com/LDOUBLEV/AutoLog
|
||||
cd AutoLog
|
||||
|
@ -24,7 +99,6 @@ pip3.7 install -r requirements.txt
|
|||
python3.7 setup.py bdist_wheel
|
||||
pip3.7 install ./dist/auto_log-1.0.0-py3-none-any.whl
|
||||
|
||||
|
||||
# 下载OCR代码
|
||||
cd ../
|
||||
git clone https://github.com/PaddlePaddle/PaddleOCR
|
||||
|
@ -45,4 +119,4 @@ A. 问题一般是当前安装paddle版本带TRT,但是本地环境找不到Te
|
|||
```
|
||||
export LD_LIBRARY_PATH=/usr/local/python3.7.0/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/paddle/package/TensorRT-6.0.1.5/lib
|
||||
```
|
||||
或者问题是下载的TensorRT版本和当前paddle中编译的TRT版本不匹配,需要下载版本相符的TRT。
|
||||
或者问题是下载的TensorRT版本和当前paddle中编译的TRT版本不匹配,需要下载版本相符的TensorRT重新安装。
|
||||
|
|
Loading…
Reference in New Issue