mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-06-03 21:53:39 +08:00
Merge pull request #4551 from WenmuZhou/copyright
add refer for some code
This commit is contained in:
commit
5aa14c5f11
@ -11,6 +11,10 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/data_loader/modules/iaa_augment.py
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
@ -1,4 +1,20 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/data_loader/modules/make_border_map.py
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
@ -1,4 +1,16 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
@ -12,12 +24,8 @@ from shapely.geometry import Polygon
|
||||
|
||||
__all__ = ['MakePseGt']
|
||||
|
||||
class MakePseGt(object):
|
||||
r'''
|
||||
Making binary mask from detection data with ICDAR format.
|
||||
Typically following the process of class `MakeICDARData`.
|
||||
'''
|
||||
|
||||
class MakePseGt(object):
|
||||
def __init__(self, kernel_num=7, size=640, min_shrink_ratio=0.4, **kwargs):
|
||||
self.kernel_num = kernel_num
|
||||
self.min_shrink_ratio = min_shrink_ratio
|
||||
@ -38,16 +46,20 @@ class MakePseGt(object):
|
||||
text_polys *= scale
|
||||
|
||||
gt_kernels = []
|
||||
for i in range(1,self.kernel_num+1):
|
||||
for i in range(1, self.kernel_num + 1):
|
||||
# s1->sn, from big to small
|
||||
rate = 1.0 - (1.0 - self.min_shrink_ratio) / (self.kernel_num - 1) * i
|
||||
text_kernel, ignore_tags = self.generate_kernel(image.shape[0:2], rate, text_polys, ignore_tags)
|
||||
rate = 1.0 - (1.0 - self.min_shrink_ratio) / (self.kernel_num - 1
|
||||
) * i
|
||||
text_kernel, ignore_tags = self.generate_kernel(
|
||||
image.shape[0:2], rate, text_polys, ignore_tags)
|
||||
gt_kernels.append(text_kernel)
|
||||
|
||||
training_mask = np.ones(image.shape[0:2], dtype='uint8')
|
||||
for i in range(text_polys.shape[0]):
|
||||
if ignore_tags[i]:
|
||||
cv2.fillPoly(training_mask, text_polys[i].astype(np.int32)[np.newaxis, :, :], 0)
|
||||
cv2.fillPoly(training_mask,
|
||||
text_polys[i].astype(np.int32)[np.newaxis, :, :],
|
||||
0)
|
||||
|
||||
gt_kernels = np.array(gt_kernels)
|
||||
gt_kernels[gt_kernels > 0] = 1
|
||||
@ -59,16 +71,25 @@ class MakePseGt(object):
|
||||
data['mask'] = training_mask.astype('float32')
|
||||
return data
|
||||
|
||||
def generate_kernel(self, img_size, shrink_ratio, text_polys, ignore_tags=None):
|
||||
def generate_kernel(self,
|
||||
img_size,
|
||||
shrink_ratio,
|
||||
text_polys,
|
||||
ignore_tags=None):
|
||||
"""
|
||||
Refer to part of the code:
|
||||
https://github.com/open-mmlab/mmocr/blob/main/mmocr/datasets/pipelines/textdet_targets/base_textdet_targets.py
|
||||
"""
|
||||
|
||||
h, w = img_size
|
||||
text_kernel = np.zeros((h, w), dtype=np.float32)
|
||||
for i, poly in enumerate(text_polys):
|
||||
polygon = Polygon(poly)
|
||||
distance = polygon.area * (1 - shrink_ratio * shrink_ratio) / (polygon.length + 1e-6)
|
||||
distance = polygon.area * (1 - shrink_ratio * shrink_ratio) / (
|
||||
polygon.length + 1e-6)
|
||||
subject = [tuple(l) for l in poly]
|
||||
pco = pyclipper.PyclipperOffset()
|
||||
pco.AddPath(subject, pyclipper.JT_ROUND,
|
||||
pyclipper.ET_CLOSEDPOLYGON)
|
||||
pco.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
|
||||
shrinked = np.array(pco.Execute(-distance))
|
||||
|
||||
if len(shrinked) == 0 or shrinked.size == 0:
|
||||
|
@ -1,4 +1,20 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/data_loader/modules/make_shrink_map.py
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
@ -1,4 +1,20 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/data_loader/modules/random_crop_data.py
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
@ -11,6 +11,10 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/RubanSeven/Text-Image-Augmentation-python/blob/master/augment.py
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from .warp_mls import WarpMLS
|
||||
|
@ -11,6 +11,10 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/RubanSeven/Text-Image-Augmentation-python/blob/master/warp_mls.py
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
@ -161,4 +165,4 @@ class WarpMLS:
|
||||
dst = np.clip(dst, 0, 255)
|
||||
dst = np.array(dst, dtype=np.uint8)
|
||||
|
||||
return dst
|
||||
return dst
|
||||
|
@ -11,6 +11,10 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/whai362/PSENet/blob/python3/models/head/psenet_head.py
|
||||
"""
|
||||
|
||||
import paddle
|
||||
from paddle import nn
|
||||
|
@ -1,4 +1,4 @@
|
||||
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||||
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@ -11,22 +11,24 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/whai362/PSENet/blob/python3/models/head/psenet_head.py
|
||||
"""
|
||||
|
||||
from paddle import nn
|
||||
|
||||
|
||||
class PSEHead(nn.Layer):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
hidden_dim=256,
|
||||
out_channels=7,
|
||||
**kwargs):
|
||||
def __init__(self, in_channels, hidden_dim=256, out_channels=7, **kwargs):
|
||||
super(PSEHead, self).__init__()
|
||||
self.conv1 = nn.Conv2D(in_channels, hidden_dim, kernel_size=3, stride=1, padding=1)
|
||||
self.conv1 = nn.Conv2D(
|
||||
in_channels, hidden_dim, kernel_size=3, stride=1, padding=1)
|
||||
self.bn1 = nn.BatchNorm2D(hidden_dim)
|
||||
self.relu1 = nn.ReLU()
|
||||
|
||||
self.conv2 = nn.Conv2D(hidden_dim, out_channels, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
self.conv2 = nn.Conv2D(
|
||||
hidden_dim, out_channels, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
out = self.conv1(x)
|
||||
|
@ -11,64 +11,102 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/whai362/PSENet/blob/python3/models/neck/fpn.py
|
||||
"""
|
||||
|
||||
import paddle.nn as nn
|
||||
import paddle
|
||||
import math
|
||||
import paddle.nn.functional as F
|
||||
|
||||
|
||||
class Conv_BN_ReLU(nn.Layer):
|
||||
def __init__(self, in_planes, out_planes, kernel_size=1, stride=1, padding=0):
|
||||
def __init__(self,
|
||||
in_planes,
|
||||
out_planes,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0):
|
||||
super(Conv_BN_ReLU, self).__init__()
|
||||
self.conv = nn.Conv2D(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding,
|
||||
bias_attr=False)
|
||||
self.conv = nn.Conv2D(
|
||||
in_planes,
|
||||
out_planes,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
bias_attr=False)
|
||||
self.bn = nn.BatchNorm2D(out_planes, momentum=0.1)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
for m in self.sublayers():
|
||||
if isinstance(m, nn.Conv2D):
|
||||
n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
|
||||
m.weight = paddle.create_parameter(shape=m.weight.shape, dtype='float32', default_initializer=paddle.nn.initializer.Normal(0, math.sqrt(2. / n)))
|
||||
m.weight = paddle.create_parameter(
|
||||
shape=m.weight.shape,
|
||||
dtype='float32',
|
||||
default_initializer=paddle.nn.initializer.Normal(
|
||||
0, math.sqrt(2. / n)))
|
||||
elif isinstance(m, nn.BatchNorm2D):
|
||||
m.weight = paddle.create_parameter(shape=m.weight.shape, dtype='float32', default_initializer=paddle.nn.initializer.Constant(1.0))
|
||||
m.bias = paddle.create_parameter(shape=m.bias.shape, dtype='float32', default_initializer=paddle.nn.initializer.Constant(0.0))
|
||||
m.weight = paddle.create_parameter(
|
||||
shape=m.weight.shape,
|
||||
dtype='float32',
|
||||
default_initializer=paddle.nn.initializer.Constant(1.0))
|
||||
m.bias = paddle.create_parameter(
|
||||
shape=m.bias.shape,
|
||||
dtype='float32',
|
||||
default_initializer=paddle.nn.initializer.Constant(0.0))
|
||||
|
||||
def forward(self, x):
|
||||
return self.relu(self.bn(self.conv(x)))
|
||||
|
||||
|
||||
class FPN(nn.Layer):
|
||||
def __init__(self, in_channels, out_channels):
|
||||
super(FPN, self).__init__()
|
||||
|
||||
# Top layer
|
||||
self.toplayer_ = Conv_BN_ReLU(in_channels[3], out_channels, kernel_size=1, stride=1, padding=0)
|
||||
self.toplayer_ = Conv_BN_ReLU(
|
||||
in_channels[3], out_channels, kernel_size=1, stride=1, padding=0)
|
||||
# Lateral layers
|
||||
self.latlayer1_ = Conv_BN_ReLU(in_channels[2], out_channels, kernel_size=1, stride=1, padding=0)
|
||||
self.latlayer1_ = Conv_BN_ReLU(
|
||||
in_channels[2], out_channels, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
self.latlayer2_ = Conv_BN_ReLU(in_channels[1], out_channels, kernel_size=1, stride=1, padding=0)
|
||||
self.latlayer2_ = Conv_BN_ReLU(
|
||||
in_channels[1], out_channels, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
self.latlayer3_ = Conv_BN_ReLU(in_channels[0], out_channels, kernel_size=1, stride=1, padding=0)
|
||||
self.latlayer3_ = Conv_BN_ReLU(
|
||||
in_channels[0], out_channels, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
# Smooth layers
|
||||
self.smooth1_ = Conv_BN_ReLU(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
self.smooth1_ = Conv_BN_ReLU(
|
||||
out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
self.smooth2_ = Conv_BN_ReLU(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
self.smooth3_ = Conv_BN_ReLU(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
self.smooth2_ = Conv_BN_ReLU(
|
||||
out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
self.smooth3_ = Conv_BN_ReLU(
|
||||
out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
self.out_channels = out_channels * 4
|
||||
for m in self.sublayers():
|
||||
if isinstance(m, nn.Conv2D):
|
||||
n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
|
||||
m.weight = paddle.create_parameter(shape=m.weight.shape, dtype='float32',
|
||||
default_initializer=paddle.nn.initializer.Normal(0,
|
||||
math.sqrt(2. / n)))
|
||||
m.weight = paddle.create_parameter(
|
||||
shape=m.weight.shape,
|
||||
dtype='float32',
|
||||
default_initializer=paddle.nn.initializer.Normal(
|
||||
0, math.sqrt(2. / n)))
|
||||
elif isinstance(m, nn.BatchNorm2D):
|
||||
m.weight = paddle.create_parameter(shape=m.weight.shape, dtype='float32',
|
||||
default_initializer=paddle.nn.initializer.Constant(1.0))
|
||||
m.bias = paddle.create_parameter(shape=m.bias.shape, dtype='float32',
|
||||
default_initializer=paddle.nn.initializer.Constant(0.0))
|
||||
m.weight = paddle.create_parameter(
|
||||
shape=m.weight.shape,
|
||||
dtype='float32',
|
||||
default_initializer=paddle.nn.initializer.Constant(1.0))
|
||||
m.bias = paddle.create_parameter(
|
||||
shape=m.bias.shape,
|
||||
dtype='float32',
|
||||
default_initializer=paddle.nn.initializer.Constant(0.0))
|
||||
|
||||
def _upsample(self, x, scale=1):
|
||||
return F.upsample(x, scale_factor=scale, mode='bilinear')
|
||||
@ -81,15 +119,15 @@ class FPN(nn.Layer):
|
||||
p5 = self.toplayer_(f5)
|
||||
|
||||
f4 = self.latlayer1_(f4)
|
||||
p4 = self._upsample_add(p5, f4,2)
|
||||
p4 = self._upsample_add(p5, f4, 2)
|
||||
p4 = self.smooth1_(p4)
|
||||
|
||||
f3 = self.latlayer2_(f3)
|
||||
p3 = self._upsample_add(p4, f3,2)
|
||||
p3 = self._upsample_add(p4, f3, 2)
|
||||
p3 = self.smooth2_(p3)
|
||||
|
||||
f2 = self.latlayer3_(f2)
|
||||
p2 = self._upsample_add(p3, f2,2)
|
||||
p2 = self._upsample_add(p3, f2, 2)
|
||||
p2 = self.smooth3_(p2)
|
||||
|
||||
p3 = self._upsample(p3, 2)
|
||||
@ -97,4 +135,4 @@ class FPN(nn.Layer):
|
||||
p5 = self._upsample(p5, 8)
|
||||
|
||||
fuse = paddle.concat([p2, p3, p4, p5], axis=1)
|
||||
return fuse
|
||||
return fuse
|
||||
|
@ -1,5 +1,6 @@
|
||||
## 编译
|
||||
code from https://github.com/whai362/pan_pp.pytorch
|
||||
This code is refer from:
|
||||
https://github.com/whai362/PSENet/blob/python3/models/post_processing/pse
|
||||
```python
|
||||
python3 setup.py build_ext --inplace
|
||||
```
|
||||
|
@ -1,16 +1,20 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/whai362/PSENet/blob/python3/models/head/psenet_head.py
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
@ -47,7 +51,8 @@ class PSEPostProcess(object):
|
||||
pred = outs_dict['maps']
|
||||
if not isinstance(pred, paddle.Tensor):
|
||||
pred = paddle.to_tensor(pred)
|
||||
pred = F.interpolate(pred, scale_factor=4 // self.scale, mode='bilinear')
|
||||
pred = F.interpolate(
|
||||
pred, scale_factor=4 // self.scale, mode='bilinear')
|
||||
|
||||
score = F.sigmoid(pred[:, 0, :, :])
|
||||
|
||||
@ -60,7 +65,9 @@ class PSEPostProcess(object):
|
||||
|
||||
boxes_batch = []
|
||||
for batch_index in range(pred.shape[0]):
|
||||
boxes, scores = self.boxes_from_bitmap(score[batch_index], kernels[batch_index], shape_list[batch_index])
|
||||
boxes, scores = self.boxes_from_bitmap(score[batch_index],
|
||||
kernels[batch_index],
|
||||
shape_list[batch_index])
|
||||
|
||||
boxes_batch.append({'points': boxes, 'scores': scores})
|
||||
return boxes_batch
|
||||
@ -98,15 +105,14 @@ class PSEPostProcess(object):
|
||||
mask = np.zeros((box_height, box_width), np.uint8)
|
||||
mask[points[:, 1], points[:, 0]] = 255
|
||||
|
||||
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL,
|
||||
cv2.CHAIN_APPROX_SIMPLE)
|
||||
bbox = np.squeeze(contours[0], 1)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
bbox[:, 0] = np.clip(
|
||||
np.round(bbox[:, 0] / ratio_w), 0, src_w)
|
||||
bbox[:, 1] = np.clip(
|
||||
np.round(bbox[:, 1] / ratio_h), 0, src_h)
|
||||
bbox[:, 0] = np.clip(np.round(bbox[:, 0] / ratio_w), 0, src_w)
|
||||
bbox[:, 1] = np.clip(np.round(bbox[:, 1] / ratio_h), 0, src_h)
|
||||
boxes.append(bbox)
|
||||
scores.append(score_i)
|
||||
return boxes, scores
|
||||
|
@ -1,4 +1,4 @@
|
||||
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||||
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@ -11,18 +11,23 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/whai362/PSENet/blob/python3/models/loss/iou.py
|
||||
"""
|
||||
|
||||
import paddle
|
||||
|
||||
EPS = 1e-6
|
||||
|
||||
|
||||
def iou_single(a, b, mask, n_class):
|
||||
valid = mask == 1
|
||||
a = a.masked_select(valid)
|
||||
b = b.masked_select(valid)
|
||||
miou = []
|
||||
for i in range(n_class):
|
||||
if a.shape == [0] and a.shape==b.shape:
|
||||
if a.shape == [0] and a.shape == b.shape:
|
||||
inter = paddle.to_tensor(0.0)
|
||||
union = paddle.to_tensor(0.0)
|
||||
else:
|
||||
@ -32,6 +37,7 @@ def iou_single(a, b, mask, n_class):
|
||||
miou = sum(miou) / len(miou)
|
||||
return miou
|
||||
|
||||
|
||||
def iou(a, b, mask, n_class=2, reduce=True):
|
||||
batch_size = a.shape[0]
|
||||
|
||||
@ -39,10 +45,10 @@ def iou(a, b, mask, n_class=2, reduce=True):
|
||||
b = b.reshape([batch_size, -1])
|
||||
mask = mask.reshape([batch_size, -1])
|
||||
|
||||
iou = paddle.zeros((batch_size,), dtype='float32')
|
||||
iou = paddle.zeros((batch_size, ), dtype='float32')
|
||||
for i in range(batch_size):
|
||||
iou[i] = iou_single(a[i], b[i], mask[i], n_class)
|
||||
|
||||
if reduce:
|
||||
iou = paddle.mean(iou)
|
||||
return iou
|
||||
return iou
|
||||
|
@ -1,4 +1,4 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||||
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@ -11,6 +11,10 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This code is refer from:
|
||||
https://github.com/WenmuZhou/PytorchOCR/blob/master/torchocr/utils/logging.py
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
|
Loading…
x
Reference in New Issue
Block a user