add FEPAN and head
parent
6670f50ae0
commit
6560d70271
|
@ -31,13 +31,14 @@ def get_bias_attr(k):
|
|||
|
||||
|
||||
class Head(nn.Layer):
|
||||
def __init__(self, in_channels, name_list):
|
||||
def __init__(self, in_channels, name_list, kernel_list=[3, 2, 2]):
|
||||
super(Head, self).__init__()
|
||||
|
||||
self.conv1 = nn.Conv2D(
|
||||
in_channels=in_channels,
|
||||
out_channels=in_channels // 4,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
kernel_size=kernel_size[0],
|
||||
padding=int(kernel_size[0] // 2),
|
||||
weight_attr=ParamAttr(),
|
||||
bias_attr=False)
|
||||
self.conv_bn1 = nn.BatchNorm(
|
||||
|
@ -50,7 +51,7 @@ class Head(nn.Layer):
|
|||
self.conv2 = nn.Conv2DTranspose(
|
||||
in_channels=in_channels // 4,
|
||||
out_channels=in_channels // 4,
|
||||
kernel_size=2,
|
||||
kernel_size=kernel_size[1],
|
||||
stride=2,
|
||||
weight_attr=ParamAttr(
|
||||
initializer=paddle.nn.initializer.KaimingUniform()),
|
||||
|
@ -65,7 +66,7 @@ class Head(nn.Layer):
|
|||
self.conv3 = nn.Conv2DTranspose(
|
||||
in_channels=in_channels // 4,
|
||||
out_channels=1,
|
||||
kernel_size=2,
|
||||
kernel_size=kernel_size[1],
|
||||
stride=2,
|
||||
weight_attr=ParamAttr(
|
||||
initializer=paddle.nn.initializer.KaimingUniform()),
|
||||
|
|
|
@ -20,7 +20,7 @@ import paddle
|
|||
from paddle import nn
|
||||
import paddle.nn.functional as F
|
||||
from paddle import ParamAttr
|
||||
from ppocr.backbones.det_mobilenet_v3 import SEModule
|
||||
from ppocr.backbones.det_mobilenet_v3 import SEModule, ConvBNLayer
|
||||
|
||||
|
||||
class DBFPN(nn.Layer):
|
||||
|
@ -179,3 +179,85 @@ class CAFPN(nn.Layer):
|
|||
|
||||
fuse = paddle.concat([p5, p4, p3, p2], axis=1)
|
||||
return fuse
|
||||
|
||||
|
||||
class FEPAN(nn.Layer):
|
||||
def __init__(self, in_channels, out_channels, **kwargs):
|
||||
super(FEPAN, self).__init__()
|
||||
self.out_channels = out_channels
|
||||
weight_attr = paddle.nn.initializer.KaimingUniform()
|
||||
|
||||
self.ins_convs = []
|
||||
self.inp_convs = []
|
||||
# pan head
|
||||
self.pan_head_conv = []
|
||||
self.pan_lat_conv = []
|
||||
|
||||
for i in range(len(in_channels)):
|
||||
self.ins_conv.append(
|
||||
nn.Conv2D(
|
||||
in_channels=in_channels[0],
|
||||
out_channels=self.out_channels,
|
||||
kernel_size=1,
|
||||
weight_attr=ParamAttr(initializer=weight_attr),
|
||||
bias_attr=False))
|
||||
|
||||
self.inp_conv.append(
|
||||
ConvBNLayer(
|
||||
in_channels=self.out_channels,
|
||||
out_channels=self.out_channels // 4,
|
||||
kernel_size=9,
|
||||
padding=4))
|
||||
|
||||
if i > 0:
|
||||
self.pan_head_conv.append(
|
||||
nn.Conv2D(
|
||||
in_channels=self.out_channels // 4,
|
||||
out_channels=self.out_channels // 4,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
stride=2,
|
||||
weight_attr=ParamAttr(initializer=weight_attr),
|
||||
bias_attr=False))
|
||||
self.pan_lat_conv.append(
|
||||
ConvBNLayer(
|
||||
in_channels=self.out_channels // 4,
|
||||
out_channels=self.out_channels // 4,
|
||||
kernel_size=9,
|
||||
padding=4))
|
||||
|
||||
def forward(self, x):
|
||||
c2, c3, c4, c5 = x
|
||||
|
||||
in5 = self.ins_conv[3](c5)
|
||||
in4 = self.ins_conv[2](c4)
|
||||
in3 = self.ins_conv[1](c3)
|
||||
in2 = self.ins_conv[0](c2)
|
||||
|
||||
out4 = in4 + F.upsample(
|
||||
in5, scale_factor=2, mode="nearest", align_mode=1) # 1/16
|
||||
out3 = in3 + F.upsample(
|
||||
out4, scale_factor=2, mode="nearest", align_mode=1) # 1/8
|
||||
out2 = in2 + F.upsample(
|
||||
out3, scale_factor=2, mode="nearest", align_mode=1) # 1/4
|
||||
|
||||
f5 = self.inp_conv[3](in5)
|
||||
f4 = self.inp_conv[2](out4)
|
||||
f3 = self.inp_conv[1](out3)
|
||||
f2 = self.inp_conv[0](out2)
|
||||
|
||||
pan3 = f3 + self.pan_head[0](f2)
|
||||
pan4 = f4 + self.pan_head[1](pan3)
|
||||
pan5 = f5 + self.pan_head[2](pan4)
|
||||
|
||||
p2 = self.pan_lat[0](f2)
|
||||
p3 = self.pan_lat[1](pan3)
|
||||
p4 = self.pan_lat[2](pan4)
|
||||
p5 = self.pan_lat[3](pan5)
|
||||
|
||||
p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
|
||||
p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
|
||||
p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)
|
||||
|
||||
fuse = paddle.concat([p5, p4, p3, p2], axis=1)
|
||||
return fuse
|
||||
|
|
Loading…
Reference in New Issue