diff --git a/doc/doc_ch/algorithm_det_drrg.md b/doc/doc_ch/algorithm_det_drrg.md new file mode 100644 index 000000000..b3d533b28 --- /dev/null +++ b/doc/doc_ch/algorithm_det_drrg.md @@ -0,0 +1,78 @@ +# DRRG + +- [1. 算法简介](#1-算法简介) +- [2. 环境配置](#2-环境配置) +- [3. 模型训练、评估、预测](#3-模型训练评估预测) +- [4. 推理部署](#4-推理部署) + - [4.1 Python推理](#41-python推理) + - [4.2 C++推理](#42-c推理) + - [4.3 Serving服务化部署](#43-serving服务化部署) + - [4.4 更多推理部署](#44-更多推理部署) +- [5. FAQ](#5-faq) +- [引用](#引用) + + +## 1. 算法简介 + +论文信息: +> [Deep Relational Reasoning Graph Network for Arbitrary Shape Text Detection](https://arxiv.org/abs/2003.07493) +> Zhang, Shi-Xue and Zhu, Xiaobin and Hou, Jie-Bo and Liu, Chang and Yang, Chun and Wang, Hongfa and Yin, Xu-Cheng +> CVPR, 2020 + +在CTW1500文本检测公开数据集上,算法复现效果如下: + +| 模型 |骨干网络|配置文件|precision|recall|Hmean|下载链接| +|-----| --- | --- | --- | --- | --- | --- | +| DRRG | ResNet50_vd | [configs/det/det_r50_drrg_ctw.yml](../../configs/det/det_r50_drrg_ctw.yml)| 89.92%|80.91%|85.18%|[训练模型](drrg_model)| + + +## 2. 环境配置 +请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。 + + + +## 3. 模型训练、评估、预测 + +上述DRRG模型使用CTW1500文本检测公开数据集训练得到,数据集下载可参考 [ocr_datasets](./dataset/ocr_datasets.md)。 + +数据下载完成后,请参考[文本检测训练教程](./detection.md)进行训练。PaddleOCR对代码进行了模块化,训练不同的检测模型只需要**更换配置文件**即可。 + + + +## 4. 推理部署 + + +### 4.1 Python推理 + +由于模型前向运行时需要多次转换为Numpy数据进行运算,因此DRRG的动态图转静态图暂未支持。 + + +### 4.2 C++推理 + +暂未支持 + + +### 4.3 Serving服务化部署 + +暂未支持 + + +### 4.4 更多推理部署 + +暂未支持 + + +## 5. FAQ + + +## 引用 + +```bibtex +@inproceedings{zhang2020deep, + title={Deep relational reasoning graph network for arbitrary shape text detection}, + author={Zhang, Shi-Xue and Zhu, Xiaobin and Hou, Jie-Bo and Liu, Chang and Yang, Chun and Wang, Hongfa and Yin, Xu-Cheng}, + booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, + pages={9699--9708}, + year={2020} +} +``` diff --git a/doc/doc_ch/algorithm_overview.md b/doc/doc_ch/algorithm_overview.md index b9b8cfa67..89ea730ee 100755 --- a/doc/doc_ch/algorithm_overview.md +++ b/doc/doc_ch/algorithm_overview.md @@ -29,6 +29,7 @@ PaddleOCR将**持续新增**支持OCR领域前沿算法与模型,**欢迎广 - [x] [SAST](./algorithm_det_sast.md) - [x] [PSENet](./algorithm_det_psenet.md) - [x] [FCENet](./algorithm_det_fcenet.md) +- [x] [DRRG](./algorithm_det_drrg.md) 在ICDAR2015文本检测公开数据集上,算法效果如下: @@ -54,6 +55,7 @@ PaddleOCR将**持续新增**支持OCR领域前沿算法与模型,**欢迎广 |模型|骨干网络|precision|recall|Hmean|下载链接| | --- | --- | --- | --- | --- | --- | |FCE|ResNet50_dcn|88.39%|82.18%|85.27%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/det_r50_dcn_fce_ctw_v2.0_train.tar)| +|DRRG|ResNet50_vd|89.92%|80.91%|85.18%|[训练模型](drrg_model)| **说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载: * [百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi) diff --git a/doc/doc_en/algorithm_det_drrg_en.md b/doc/doc_en/algorithm_det_drrg_en.md new file mode 100644 index 000000000..837f5c200 --- /dev/null +++ b/doc/doc_en/algorithm_det_drrg_en.md @@ -0,0 +1,79 @@ +# DRRG + +- [1. Introduction](#1) +- [2. Environment](#2) +- [3. Model Training / Evaluation / Prediction](#3) + - [3.1 Training](#3-1) + - [3.2 Evaluation](#3-2) + - [3.3 Prediction](#3-3) +- [4. Inference and Deployment](#4) + - [4.1 Python Inference](#4-1) + - [4.2 C++ Inference](#4-2) + - [4.3 Serving](#4-3) + - [4.4 More](#4-4) +- [5. FAQ](#5) + + +## 1. Introduction + +Paper: +> [Deep Relational Reasoning Graph Network for Arbitrary Shape Text Detection](https://arxiv.org/abs/2003.07493) +> Zhang, Shi-Xue and Zhu, Xiaobin and Hou, Jie-Bo and Liu, Chang and Yang, Chun and Wang, Hongfa and Yin, Xu-Cheng +> CVPR, 2020 + +On the CTW1500 dataset, the text detection result is as follows: + +|Model|Backbone|Configuration|Precision|Recall|Hmean|Download| +| --- | --- | --- | --- | --- | --- | --- | +| DRRG | ResNet50_vd | [configs/det/det_r50_drrg_ctw.yml](../../configs/det/det_r50_drrg_ctw.yml)| 89.92%|80.91%|85.18%|[trained model](drrg_model)| + + +## 2. Environment +Please prepare your environment referring to [prepare the environment](./environment_en.md) and [clone the repo](./clone_en.md). + + + +## 3. Model Training / Evaluation / Prediction + +The above DRRG model is trained using the CTW1500 text detection public dataset. For the download of the dataset, please refer to [ocr_datasets](./dataset/ocr_datasets_en.md). + +After the data download is complete, please refer to [Text Detection Training Tutorial](./detection_en.md) for training. PaddleOCR has modularized the code structure, so that you only need to **replace the configuration file** to train different detection models. + + +## 4. Inference and Deployment + + +### 4.1 Python Inference + +Since the model needs to be converted to Numpy data for many times in the forward, DRRG dynamic graph to static graph is not supported. + + +### 4.2 C++ Inference + +Not supported + + +### 4.3 Serving + +Not supported + + +### 4.4 More + +Not supported + + +## 5. FAQ + + +## Citation + +```bibtex +@inproceedings{zhang2020deep, + title={Deep relational reasoning graph network for arbitrary shape text detection}, + author={Zhang, Shi-Xue and Zhu, Xiaobin and Hou, Jie-Bo and Liu, Chang and Yang, Chun and Wang, Hongfa and Yin, Xu-Cheng}, + booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, + pages={9699--9708}, + year={2020} +} +``` diff --git a/doc/doc_en/algorithm_overview_en.md b/doc/doc_en/algorithm_overview_en.md index 073bca103..8722939e9 100755 --- a/doc/doc_en/algorithm_overview_en.md +++ b/doc/doc_en/algorithm_overview_en.md @@ -27,6 +27,7 @@ Supported text detection algorithms (Click the link to get the tutorial): - [x] [SAST](./algorithm_det_sast_en.md) - [x] [PSENet](./algorithm_det_psenet_en.md) - [x] [FCENet](./algorithm_det_fcenet_en.md) +- [x] [DRRG](./algorithm_det_drrg_en.md) On the ICDAR2015 dataset, the text detection result is as follows: @@ -52,6 +53,7 @@ On CTW1500 dataset, the text detection result is as follows: |Model|Backbone|Precision|Recall|Hmean| Download link| | --- | --- | --- | --- | --- |---| |FCE|ResNet50_dcn|88.39%|82.18%|85.27%| [trained model](https://paddleocr.bj.bcebos.com/contribution/det_r50_dcn_fce_ctw_v2.0_train.tar) | +|DRRG|ResNet50_vd|89.92%|80.91%|85.18%|[trained model](drrg_model)| **Note:** Additional data, like icdar2013, icdar2017, COCO-Text, ArT, was added to the model training of SAST. Download English public dataset in organized format used by PaddleOCR from: * [Baidu Drive](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (download code: 2bpi).