fix bug in mem
parent
1a2c400750
commit
6fcc2e7150
|
@ -15,108 +15,115 @@
|
|||
#include <include/ocr_rec.h>
|
||||
|
||||
namespace PaddleOCR {
|
||||
|
||||
void CRNNRecognizer::Run(std::vector<cv::Mat> img_list, std::vector<double> *times) {
|
||||
std::chrono::duration<float> preprocess_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
|
||||
std::chrono::duration<float> inference_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
|
||||
std::chrono::duration<float> postprocess_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
|
||||
|
||||
int img_num = img_list.size();
|
||||
std::vector<float> width_list;
|
||||
for (int i = 0; i < img_num; i++) {
|
||||
width_list.push_back(float(img_list[i].cols) / img_list[i].rows);
|
||||
void CRNNRecognizer::Run(std::vector<cv::Mat> img_list,
|
||||
std::vector<double> *times) {
|
||||
std::chrono::duration<float> preprocess_diff =
|
||||
std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
|
||||
std::chrono::duration<float> inference_diff =
|
||||
std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
|
||||
std::chrono::duration<float> postprocess_diff =
|
||||
std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
|
||||
|
||||
int img_num = img_list.size();
|
||||
std::vector<float> width_list;
|
||||
for (int i = 0; i < img_num; i++) {
|
||||
width_list.push_back(float(img_list[i].cols) / img_list[i].rows);
|
||||
}
|
||||
std::vector<int> indices = Utility::argsort(width_list);
|
||||
|
||||
for (int beg_img_no = 0; beg_img_no < img_num;
|
||||
beg_img_no += this->rec_batch_num_) {
|
||||
auto preprocess_start = std::chrono::steady_clock::now();
|
||||
int end_img_no = min(img_num, beg_img_no + this->rec_batch_num_);
|
||||
float max_wh_ratio = 0;
|
||||
for (int ino = beg_img_no; ino < end_img_no; ino++) {
|
||||
int h = img_list[indices[ino]].rows;
|
||||
int w = img_list[indices[ino]].cols;
|
||||
float wh_ratio = w * 1.0 / h;
|
||||
max_wh_ratio = max(max_wh_ratio, wh_ratio);
|
||||
}
|
||||
std::vector<int> indices = Utility::argsort(width_list);
|
||||
|
||||
for (int beg_img_no = 0; beg_img_no < img_num; beg_img_no += this->rec_batch_num_) {
|
||||
auto preprocess_start = std::chrono::steady_clock::now();
|
||||
int end_img_no = min(img_num, beg_img_no + this->rec_batch_num_);
|
||||
float max_wh_ratio = 0;
|
||||
for (int ino = beg_img_no; ino < end_img_no; ino ++) {
|
||||
int h = img_list[indices[ino]].rows;
|
||||
int w = img_list[indices[ino]].cols;
|
||||
float wh_ratio = w * 1.0 / h;
|
||||
max_wh_ratio = max(max_wh_ratio, wh_ratio);
|
||||
}
|
||||
std::vector<cv::Mat> norm_img_batch;
|
||||
for (int ino = beg_img_no; ino < end_img_no; ino ++) {
|
||||
cv::Mat srcimg;
|
||||
img_list[indices[ino]].copyTo(srcimg);
|
||||
cv::Mat resize_img;
|
||||
this->resize_op_.Run(srcimg, resize_img, max_wh_ratio, this->use_tensorrt_);
|
||||
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_, this->is_scale_);
|
||||
norm_img_batch.push_back(resize_img);
|
||||
}
|
||||
|
||||
int batch_width = int(ceilf(32 * max_wh_ratio)) - 1;
|
||||
std::vector<float> input(this->rec_batch_num_ * 3 * 32 * batch_width, 0.0f);
|
||||
this->permute_op_.Run(norm_img_batch, input.data());
|
||||
auto preprocess_end = std::chrono::steady_clock::now();
|
||||
preprocess_diff += preprocess_end - preprocess_start;
|
||||
|
||||
// Inference.
|
||||
auto input_names = this->predictor_->GetInputNames();
|
||||
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
|
||||
input_t->Reshape({this->rec_batch_num_, 3, 32, batch_width});
|
||||
auto inference_start = std::chrono::steady_clock::now();
|
||||
input_t->CopyFromCpu(input.data());
|
||||
this->predictor_->Run();
|
||||
|
||||
std::vector<float> predict_batch;
|
||||
auto output_names = this->predictor_->GetOutputNames();
|
||||
auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
|
||||
auto predict_shape = output_t->shape();
|
||||
|
||||
int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
|
||||
std::multiplies<int>());
|
||||
predict_batch.resize(out_num);
|
||||
|
||||
output_t->CopyToCpu(predict_batch.data());
|
||||
auto inference_end = std::chrono::steady_clock::now();
|
||||
inference_diff += inference_end - inference_start;
|
||||
|
||||
// ctc decode
|
||||
auto postprocess_start = std::chrono::steady_clock::now();
|
||||
for (int m = 0; m < predict_shape[0]; m++) {
|
||||
std::vector<std::string> str_res;
|
||||
int argmax_idx;
|
||||
int last_index = 0;
|
||||
float score = 0.f;
|
||||
int count = 0;
|
||||
float max_value = 0.0f;
|
||||
|
||||
for (int n = 0; n < predict_shape[1]; n++) {
|
||||
argmax_idx =
|
||||
int(Utility::argmax(&predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
|
||||
&predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
|
||||
max_value =
|
||||
float(*std::max_element(&predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
|
||||
&predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
|
||||
|
||||
if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
|
||||
score += max_value;
|
||||
count += 1;
|
||||
str_res.push_back(label_list_[argmax_idx]);
|
||||
}
|
||||
last_index = argmax_idx;
|
||||
}
|
||||
score /= count;
|
||||
if (isnan(score))
|
||||
continue;
|
||||
for (int i = 0; i < str_res.size(); i++) {
|
||||
std::cout << str_res[i];
|
||||
}
|
||||
std::cout << "\tscore: " << score << std::endl;
|
||||
}
|
||||
auto postprocess_end = std::chrono::steady_clock::now();
|
||||
postprocess_diff += postprocess_end - postprocess_start;
|
||||
int batch_width = 0;
|
||||
std::vector<cv::Mat> norm_img_batch;
|
||||
for (int ino = beg_img_no; ino < end_img_no; ino++) {
|
||||
cv::Mat srcimg;
|
||||
img_list[indices[ino]].copyTo(srcimg);
|
||||
cv::Mat resize_img;
|
||||
this->resize_op_.Run(srcimg, resize_img, max_wh_ratio,
|
||||
this->use_tensorrt_);
|
||||
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
|
||||
this->is_scale_);
|
||||
norm_img_batch.push_back(resize_img);
|
||||
batch_width = max(resize_img.cols, batch_width);
|
||||
}
|
||||
times->push_back(double(preprocess_diff.count() * 1000));
|
||||
times->push_back(double(inference_diff.count() * 1000));
|
||||
times->push_back(double(postprocess_diff.count() * 1000));
|
||||
|
||||
std::vector<float> input(this->rec_batch_num_ * 3 * 32 * batch_width, 0.0f);
|
||||
this->permute_op_.Run(norm_img_batch, input.data());
|
||||
auto preprocess_end = std::chrono::steady_clock::now();
|
||||
preprocess_diff += preprocess_end - preprocess_start;
|
||||
|
||||
// Inference.
|
||||
auto input_names = this->predictor_->GetInputNames();
|
||||
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
|
||||
input_t->Reshape({this->rec_batch_num_, 3, 32, batch_width});
|
||||
auto inference_start = std::chrono::steady_clock::now();
|
||||
input_t->CopyFromCpu(input.data());
|
||||
this->predictor_->Run();
|
||||
|
||||
std::vector<float> predict_batch;
|
||||
auto output_names = this->predictor_->GetOutputNames();
|
||||
auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
|
||||
auto predict_shape = output_t->shape();
|
||||
|
||||
int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
|
||||
std::multiplies<int>());
|
||||
predict_batch.resize(out_num);
|
||||
|
||||
output_t->CopyToCpu(predict_batch.data());
|
||||
auto inference_end = std::chrono::steady_clock::now();
|
||||
inference_diff += inference_end - inference_start;
|
||||
|
||||
// ctc decode
|
||||
auto postprocess_start = std::chrono::steady_clock::now();
|
||||
for (int m = 0; m < predict_shape[0]; m++) {
|
||||
std::vector<std::string> str_res;
|
||||
int argmax_idx;
|
||||
int last_index = 0;
|
||||
float score = 0.f;
|
||||
int count = 0;
|
||||
float max_value = 0.0f;
|
||||
|
||||
for (int n = 0; n < predict_shape[1]; n++) {
|
||||
argmax_idx = int(Utility::argmax(
|
||||
&predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
|
||||
&predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
|
||||
max_value = float(*std::max_element(
|
||||
&predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
|
||||
&predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
|
||||
|
||||
if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
|
||||
score += max_value;
|
||||
count += 1;
|
||||
str_res.push_back(label_list_[argmax_idx]);
|
||||
}
|
||||
last_index = argmax_idx;
|
||||
}
|
||||
score /= count;
|
||||
if (isnan(score))
|
||||
continue;
|
||||
for (int i = 0; i < str_res.size(); i++) {
|
||||
std::cout << str_res[i];
|
||||
}
|
||||
std::cout << "\tscore: " << score << std::endl;
|
||||
}
|
||||
auto postprocess_end = std::chrono::steady_clock::now();
|
||||
postprocess_diff += postprocess_end - postprocess_start;
|
||||
}
|
||||
times->push_back(double(preprocess_diff.count() * 1000));
|
||||
times->push_back(double(inference_diff.count() * 1000));
|
||||
times->push_back(double(postprocess_diff.count() * 1000));
|
||||
}
|
||||
|
||||
|
||||
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
|
||||
// AnalysisConfig config;
|
||||
paddle_infer::Config config;
|
||||
|
@ -130,23 +137,17 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) {
|
|||
if (this->precision_ == "fp16") {
|
||||
precision = paddle_infer::Config::Precision::kHalf;
|
||||
}
|
||||
if (this->precision_ == "int8") {
|
||||
if (this->precision_ == "int8") {
|
||||
precision = paddle_infer::Config::Precision::kInt8;
|
||||
}
|
||||
config.EnableTensorRtEngine(
|
||||
1 << 20, 10, 3,
|
||||
precision,
|
||||
false, false);
|
||||
}
|
||||
config.EnableTensorRtEngine(1 << 20, 10, 3, precision, false, false);
|
||||
|
||||
std::map<std::string, std::vector<int>> min_input_shape = {
|
||||
{"x", {1, 3, 32, 10}},
|
||||
{"lstm_0.tmp_0", {10, 1, 96}}};
|
||||
{"x", {1, 3, 32, 10}}, {"lstm_0.tmp_0", {10, 1, 96}}};
|
||||
std::map<std::string, std::vector<int>> max_input_shape = {
|
||||
{"x", {1, 3, 32, 2000}},
|
||||
{"lstm_0.tmp_0", {1000, 1, 96}}};
|
||||
{"x", {1, 3, 32, 2000}}, {"lstm_0.tmp_0", {1000, 1, 96}}};
|
||||
std::map<std::string, std::vector<int>> opt_input_shape = {
|
||||
{"x", {1, 3, 32, 320}},
|
||||
{"lstm_0.tmp_0", {25, 1, 96}}};
|
||||
{"x", {1, 3, 32, 320}}, {"lstm_0.tmp_0", {25, 1, 96}}};
|
||||
|
||||
config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
|
||||
opt_input_shape);
|
||||
|
@ -168,7 +169,7 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) {
|
|||
config.SwitchIrOptim(true);
|
||||
|
||||
config.EnableMemoryOptim();
|
||||
// config.DisableGlogInfo();
|
||||
// config.DisableGlogInfo();
|
||||
|
||||
this->predictor_ = CreatePredictor(config);
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue