docs: Shorten the image path and remove dupliate images (#13585)
* docs: Shorten the image path * docs: Remove duplicate imagespull/13588/head^2
Before Width: | Height: | Size: 1.2 MiB |
Before Width: | Height: | Size: 1.1 MiB |
Before Width: | Height: | Size: 1005 KiB |
Before Width: | Height: | Size: 365 KiB |
Before Width: | Height: | Size: 404 KiB |
Before Width: | Height: | Size: 262 KiB |
Before Width: | Height: | Size: 384 KiB |
Before Width: | Height: | Size: 1.2 MiB After Width: | Height: | Size: 1.2 MiB |
Before Width: | Height: | Size: 8.7 KiB After Width: | Height: | Size: 8.7 KiB |
Before Width: | Height: | Size: 333 KiB After Width: | Height: | Size: 333 KiB |
Before Width: | Height: | Size: 333 KiB |
Before Width: | Height: | Size: 8.7 KiB After Width: | Height: | Size: 8.7 KiB |
Before Width: | Height: | Size: 2.3 KiB |
After Width: | Height: | Size: 6.1 KiB |
Before Width: | Height: | Size: 143 KiB |
Before Width: | Height: | Size: 38 KiB |
|
@ -15,15 +15,15 @@ PaddleOCR场景应用覆盖通用,制造、金融、交通行业的主要OCR
|
|||
| 类别 | 亮点 | 模型下载 | 教程 | 示例图 |
|
||||
| ---------------------- | ------------------------------------------------------------ | -------------- | --------------------------------------- | ------------------------------------------------------------ |
|
||||
| 高精度中文识别模型SVTR | 比PP-OCRv3识别模型精度高3%,<br />可用于数据挖掘或对预测效率要求不高的场景。 | [模型下载](#2) | [中文](./高精度中文识别模型.md)/English | <img src="./images/svtr_tiny-20240708094336228.png" alt="img" width = "200" height = "100" /> |
|
||||
| 手写体识别 | 新增字形支持 | [模型下载](#2) | [中文](./手写文字识别.md)/English | <img src="./images/7a8865b2836f42d382e7c3fdaedc4d307d797fa2bcd0466e9f8b7705efff5a7b-20240708094343198.png" width = "200" height = "100" /> |
|
||||
| 手写体识别 | 新增字形支持 | [模型下载](#2) | [中文](./手写文字识别.md)/English | <img src="./images/7a8865.png" width = "200" height = "100" /> |
|
||||
|
||||
### 制造
|
||||
|
||||
| 类别 | 亮点 | 模型下载 | 教程 | 示例图 |
|
||||
| -------------- | ------------------------------ | -------------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
|
||||
| 数码管识别 | 数码管数据合成、漏识别调优 | [模型下载](#2) | [中文](./光功率计数码管字符识别/光功率计数码管字符识别.md)/English | <img src="./images/7d5774a273f84efba5b9ce7fd3f86e9ef24b6473e046444db69fa3ca20ac0986.png" width = "200" height = "100" /> |
|
||||
| 数码管识别 | 数码管数据合成、漏识别调优 | [模型下载](#2) | [中文](./光功率计数码管字符识别/光功率计数码管字符识别.md)/English | <img src="./images/7d5774a.png" width = "200" height = "100" /> |
|
||||
| 液晶屏读数识别 | 检测模型蒸馏、Serving部署 | [模型下载](#2) | [中文](./液晶屏读数识别.md)/English | <img src="./images/901ab741cb46441ebec510b37e63b9d8d1b7c95f63cc4e5e8757f35179ae6373.png" width = "200" height = "100" /> |
|
||||
| 包装生产日期 | 点阵字符合成、过曝过暗文字识别 | [模型下载](#2) | [中文](./包装生产日期识别.md)/English | <img src="./images/68747470733a2f2f61692d73747564696f2d7374617469632d6f6e6c696e652e63646e2e626365626f732e636f6d2f64396530353333636331646634376666613362626539396465396534323633396133656266613562636538333462616662316361343537346266396462363834.png" width = "200" height = "100" /> |
|
||||
| 包装生产日期 | 点阵字符合成、过曝过暗文字识别 | [模型下载](#2) | [中文](./包装生产日期识别.md)/English | <img src="./images/68747470733.png" width = "200" height = "100" /> |
|
||||
| PCB文字识别 | 小尺寸文本检测与识别 | [模型下载](#2) | [中文](./PCB字符识别/PCB字符识别.md)/English | <img src="./images/95d8e95bf1ab476987f2519c0f8f0c60a0cdc2c444804ed6ab08f2f7ab054880.png" width = "200" height = "100" /> |
|
||||
| 电表识别 | 大分辨率图像检测调优 | [模型下载](#2) | | |
|
||||
| 液晶屏缺陷检测 | 非文字字符识别 | | | |
|
||||
|
|
|
@ -80,7 +80,7 @@ paddleocr --lang=ch --det=Fase --image_dir=data
|
|||
|
||||

|
||||
|
||||

|
||||

|
||||
|
||||
```bash linenums="1"
|
||||
export https_proxy=http://172.19.57.45:3128
|
||||
|
@ -120,7 +120,7 @@ python3 main.py \
|
|||
|
||||
查看合成的数据样例:
|
||||
|
||||

|
||||

|
||||
|
||||
#### 真实数据挖掘
|
||||
|
||||
|
@ -442,7 +442,7 @@ python3 tools/infer_rec.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.
|
|||
|
||||
预测图片:
|
||||
|
||||

|
||||

|
||||
|
||||
得到输入图像的预测结果:
|
||||
|
||||
|
|
|
@ -9,7 +9,7 @@ comments: true
|
|||
|
||||
产品包装生产日期是计算机视觉图像识别技术在工业场景中的一种应用。产品包装生产日期识别技术要求能够将产品生产日期从复杂背景中提取并识别出来,在物流管理、物资管理中得到广泛应用。
|
||||
|
||||

|
||||

|
||||
|
||||
- 项目难点
|
||||
|
||||
|
|
Before Width: | Height: | Size: 864 KiB |
Before Width: | Height: | Size: 165 KiB |
Before Width: | Height: | Size: 404 KiB |
Before Width: | Height: | Size: 89 KiB |
Before Width: | Height: | Size: 487 KiB |
Before Width: | Height: | Size: 1.9 MiB |
Before Width: | Height: | Size: 1.1 MiB |
Before Width: | Height: | Size: 578 KiB |
Before Width: | Height: | Size: 205 KiB |
Before Width: | Height: | Size: 807 KiB |