update readme: added PaddleOCR algorithm model challenge champion solutions (#13263)
parent
661f41d484
commit
7a3c580909
|
@ -31,6 +31,11 @@ PaddleOCR 由 [PMC](https://github.com/PaddlePaddle/PaddleOCR/issues/12122) 监
|
|||
|
||||
## 📣 近期更新
|
||||
- **📚直播和OCR实战打卡营预告**:《PP-ChatOCRv2赋能金融报告信息智能化抽取,新金融效率再升级》课程上线,破解复杂版面、表格识别、信息抽取OCR解析难题,直播时间:6月6日(周四)19:00。并于6月11日启动【政务采购合同信息抽取】实战打卡营。报名链接:https://www.wjx.top/vm/eBcYmqO.aspx?udsid=197406
|
||||
|
||||
- **🔥2024.7 添加 PaddleOCR 算法模型挑战赛冠军方案**:
|
||||
- 赛题一:OCR 端到端识别任务冠军方案——[场景文本识别算法-SVTRv2](doc/doc_ch/algorithm_rec_svtrv2.md);
|
||||
- 赛题二:通用表格识别任务冠军方案——[表格识别算法-SLANet-LCNetV2](doc/doc_ch/algorithm_table_slanet.md)。
|
||||
|
||||
- **🔥2024.5.10 上线星河零代码产线(OCR 相关)**:全面覆盖了以下四大 OCR 核心任务,提供极便捷的 Badcase 分析和实用的在线体验:
|
||||
- [通用 OCR](https://aistudio.baidu.com/community/app/91660) (PP-OCRv4)。
|
||||
- [通用表格识别](https://aistudio.baidu.com/community/app/91661) (SLANet)。
|
||||
|
|
|
@ -31,6 +31,11 @@ PaddleOCR is being oversight by a [PMC](https://github.com/PaddlePaddle/PaddleOC
|
|||
⚠️ Note: The [Issues](https://github.com/PaddlePaddle/PaddleOCR/issues) module is only for reporting program 🐞 bugs, for the rest of the questions, please move to the [Discussions](https://github.com/PaddlePaddle/PaddleOCR/discussions). Please note that if the Issue mentioned is not a bug, it will be moved to the Discussions module.
|
||||
|
||||
## 📣 Recent updates
|
||||
|
||||
- **🔥2024.7 Added PaddleOCR Algorithm Model Challenge Champion Solutions**:
|
||||
- Challenge One, OCR End-to-End Recognition Task Champion Solution: [Scene Text Recognition Algorithm-SVTRv2](doc/doc_ch/algorithm_rec_svtrv2.md);
|
||||
- Challenge Two, General Table Recognition Task Champion Solution: [Table Recognition Algorithm-SLANet-LCNetV2](doc/doc_ch/algorithm_table_slanet.md).
|
||||
|
||||
- **🔥2023.8.7 Release PaddleOCR[release/2.7](https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.7)**
|
||||
- Release [PP-OCRv4](./doc/doc_ch/PP-OCRv4_introduction.md), support mobile version and server version
|
||||
- PP-OCRv4-mobile:When the speed is comparable, the effect of the Chinese scene is improved by 4.5% compared with PP-OCRv3, the English scene is improved by 10%, and the average recognition accuracy of the 80-language multilingual model is increased by more than 8%.
|
||||
|
|
Loading…
Reference in New Issue