mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-06-03 21:53:39 +08:00
add fepan lite
This commit is contained in:
parent
2b3f89f0e2
commit
8c173feb3f
@ -16,7 +16,7 @@ __all__ = ['build_neck']
|
||||
|
||||
|
||||
def build_neck(config):
|
||||
from .db_fpn import DBFPN, CAFPN, FEPAN
|
||||
from .db_fpn import DBFPN, CAFPN, FEPAN, FEPANLite
|
||||
from .east_fpn import EASTFPN
|
||||
from .sast_fpn import SASTFPN
|
||||
from .rnn import SequenceEncoder
|
||||
@ -26,8 +26,8 @@ def build_neck(config):
|
||||
from .fce_fpn import FCEFPN
|
||||
from .pren_fpn import PRENFPN
|
||||
support_dict = [
|
||||
'FPN', 'FCEFPN', 'FEPAN', 'DBFPN', 'CAFPN', 'EASTFPN', 'SASTFPN',
|
||||
'SequenceEncoder', 'PGFPN', 'TableFPN', 'PRENFPN'
|
||||
'FPN', 'FCEFPN', 'FEPAN', 'FEPANLite', 'DBFPN', 'CAFPN', 'EASTFPN',
|
||||
'SASTFPN', 'SequenceEncoder', 'PGFPN', 'TableFPN', 'PRENFPN'
|
||||
]
|
||||
|
||||
module_name = config.pop('name')
|
||||
|
@ -30,7 +30,7 @@ sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../../..')))
|
||||
from ppocr.modeling.backbones.det_mobilenet_v3 import SEModule
|
||||
|
||||
|
||||
class ConvBNLayer(nn.Layer):
|
||||
class DSConv(nn.Layer):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
@ -40,7 +40,7 @@ class ConvBNLayer(nn.Layer):
|
||||
groups=None,
|
||||
if_act=True,
|
||||
act="relu"):
|
||||
super(ConvBNLayer, self).__init__()
|
||||
super(DSConv, self).__init__()
|
||||
if groups == None:
|
||||
groups = in_channels
|
||||
self.if_act = if_act
|
||||
@ -268,23 +268,109 @@ class FEPAN(nn.Layer):
|
||||
self.out_channels = out_channels
|
||||
weight_attr = paddle.nn.initializer.KaimingUniform()
|
||||
|
||||
self.ins_conv = []
|
||||
self.inp_conv = []
|
||||
self.ins_conv = nn.LayerList()
|
||||
self.inp_conv = nn.LayerList()
|
||||
# pan head
|
||||
self.pan_head_conv = []
|
||||
self.pan_lat_conv = []
|
||||
self.pan_head_conv = nn.LayerList()
|
||||
self.pan_lat_conv = nn.LayerList()
|
||||
|
||||
for i in range(len(in_channels)):
|
||||
self.ins_conv.append(
|
||||
nn.Conv2D(
|
||||
in_channels=in_channels[0],
|
||||
in_channels=in_channels[i],
|
||||
out_channels=self.out_channels,
|
||||
kernel_size=1,
|
||||
weight_attr=ParamAttr(initializer=weight_attr),
|
||||
bias_attr=False))
|
||||
|
||||
self.inp_conv.append(
|
||||
ConvBNLayer(
|
||||
nn.Conv2D(
|
||||
in_channels=self.out_channels,
|
||||
out_channels=self.out_channels // 4,
|
||||
kernel_size=9,
|
||||
padding=4,
|
||||
weight_attr=ParamAttr(initializer=weight_attr),
|
||||
bias_attr=False))
|
||||
|
||||
if i > 0:
|
||||
self.pan_head_conv.append(
|
||||
nn.Conv2D(
|
||||
in_channels=self.out_channels // 4,
|
||||
out_channels=self.out_channels // 4,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
stride=2,
|
||||
weight_attr=ParamAttr(initializer=weight_attr),
|
||||
bias_attr=False))
|
||||
self.pan_lat_conv.append(
|
||||
nn.Conv2D(
|
||||
in_channels=self.out_channels // 4,
|
||||
out_channels=self.out_channels // 4,
|
||||
kernel_size=9,
|
||||
padding=4,
|
||||
weight_attr=ParamAttr(initializer=weight_attr),
|
||||
bias_attr=False))
|
||||
|
||||
def forward(self, x):
|
||||
c2, c3, c4, c5 = x
|
||||
|
||||
in5 = self.ins_conv[3](c5)
|
||||
in4 = self.ins_conv[2](c4)
|
||||
in3 = self.ins_conv[1](c3)
|
||||
in2 = self.ins_conv[0](c2)
|
||||
|
||||
out4 = in4 + F.upsample(
|
||||
in5, scale_factor=2, mode="nearest", align_mode=1) # 1/16
|
||||
out3 = in3 + F.upsample(
|
||||
out4, scale_factor=2, mode="nearest", align_mode=1) # 1/8
|
||||
out2 = in2 + F.upsample(
|
||||
out3, scale_factor=2, mode="nearest", align_mode=1) # 1/4
|
||||
|
||||
f5 = self.inp_conv[3](in5)
|
||||
f4 = self.inp_conv[2](out4)
|
||||
f3 = self.inp_conv[1](out3)
|
||||
f2 = self.inp_conv[0](out2)
|
||||
|
||||
pan3 = f3 + self.pan_head_conv[0](f2)
|
||||
pan4 = f4 + self.pan_head_conv[1](pan3)
|
||||
pan5 = f5 + self.pan_head_conv[2](pan4)
|
||||
|
||||
p2 = self.pan_lat_conv[0](f2)
|
||||
p3 = self.pan_lat_conv[1](pan3)
|
||||
p4 = self.pan_lat_conv[2](pan4)
|
||||
p5 = self.pan_lat_conv[3](pan5)
|
||||
|
||||
p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
|
||||
p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
|
||||
p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)
|
||||
|
||||
fuse = paddle.concat([p5, p4, p3, p2], axis=1)
|
||||
return fuse
|
||||
|
||||
|
||||
class FEPANLite(nn.Layer):
|
||||
def __init__(self, in_channels, out_channels, **kwargs):
|
||||
super(FEPANLite, self).__init__()
|
||||
self.out_channels = out_channels
|
||||
weight_attr = paddle.nn.initializer.KaimingUniform()
|
||||
|
||||
self.ins_conv = nn.LayerList()
|
||||
self.inp_conv = nn.LayerList()
|
||||
# pan head
|
||||
self.pan_head_conv = nn.LayerList()
|
||||
self.pan_lat_conv = nn.LayerList()
|
||||
|
||||
for i in range(len(in_channels)):
|
||||
self.ins_conv.append(
|
||||
nn.Conv2D(
|
||||
in_channels=in_channels[i],
|
||||
out_channels=self.out_channels,
|
||||
kernel_size=1,
|
||||
weight_attr=ParamAttr(initializer=weight_attr),
|
||||
bias_attr=False))
|
||||
|
||||
self.inp_conv.append(
|
||||
DSConv(
|
||||
in_channels=self.out_channels,
|
||||
out_channels=self.out_channels // 4,
|
||||
kernel_size=9,
|
||||
@ -300,8 +386,9 @@ class FEPAN(nn.Layer):
|
||||
stride=2,
|
||||
weight_attr=ParamAttr(initializer=weight_attr),
|
||||
bias_attr=False))
|
||||
|
||||
self.pan_lat_conv.append(
|
||||
ConvBNLayer(
|
||||
DSConv(
|
||||
in_channels=self.out_channels // 4,
|
||||
out_channels=self.out_channels // 4,
|
||||
kernel_size=9,
|
||||
@ -327,14 +414,14 @@ class FEPAN(nn.Layer):
|
||||
f3 = self.inp_conv[1](out3)
|
||||
f2 = self.inp_conv[0](out2)
|
||||
|
||||
pan3 = f3 + self.pan_head[0](f2)
|
||||
pan4 = f4 + self.pan_head[1](pan3)
|
||||
pan5 = f5 + self.pan_head[2](pan4)
|
||||
pan3 = f3 + self.pan_head_conv[0](f2)
|
||||
pan4 = f4 + self.pan_head_conv[1](pan3)
|
||||
pan5 = f5 + self.pan_head_conv[2](pan4)
|
||||
|
||||
p2 = self.pan_lat[0](f2)
|
||||
p3 = self.pan_lat[1](pan3)
|
||||
p4 = self.pan_lat[2](pan4)
|
||||
p5 = self.pan_lat[3](pan5)
|
||||
p2 = self.pan_lat_conv[0](f2)
|
||||
p3 = self.pan_lat_conv[1](pan3)
|
||||
p4 = self.pan_lat_conv[2](pan4)
|
||||
p5 = self.pan_lat_conv[3](pan5)
|
||||
|
||||
p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
|
||||
p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
|
||||
|
Loading…
x
Reference in New Issue
Block a user