add db++
parent
a63f4414e2
commit
9422629cc0
|
@ -10,7 +10,7 @@ Global:
|
|||
- 0
|
||||
- 2000
|
||||
cal_metric_during_train: false
|
||||
pretrained_model: ./pretrain_models/synthtext_pretrained_res50_dcn_asf_spatial
|
||||
pretrained_model: ./pretrain_models/ResNet50_dcn_asf_synthtext_pretrained
|
||||
checkpoints: null
|
||||
save_inference_dir: null
|
||||
use_visualdl: false
|
||||
|
|
|
@ -10,7 +10,7 @@ Global:
|
|||
- 0
|
||||
- 2000
|
||||
cal_metric_during_train: false
|
||||
pretrained_model: ./pretrain_models/synthtext_pretrained_res50_dcn_asf_spatial
|
||||
pretrained_model: ./pretrain_models/ResNet50_dcn_asf_synthtext_pretrained
|
||||
checkpoints: null
|
||||
save_inference_dir: null
|
||||
use_visualdl: false
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# DB
|
||||
# DB与DB++
|
||||
|
||||
- [1. 算法简介](#1)
|
||||
- [2. 环境配置](#2)
|
||||
|
@ -21,12 +21,24 @@
|
|||
> Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang
|
||||
> AAAI, 2020
|
||||
|
||||
> [Real-Time Scene Text Detection with Differentiable Binarization and Adaptive Scale Fusion](https://arxiv.org/abs/2202.10304)
|
||||
> Liao, Minghui and Zou, Zhisheng and Wan, Zhaoyi and Yao, Cong and Bai, Xiang
|
||||
> TPAMI, 2022
|
||||
|
||||
|
||||
在ICDAR2015文本检测公开数据集上,算法复现效果如下:
|
||||
|
||||
|模型|骨干网络|配置文件|precision|recall|Hmean|下载链接|
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
|DB|ResNet50_vd|[configs/det/det_r50_vd_db.yml](../../configs/det/det_r50_vd_db.yml)|86.41%|78.72%|82.38%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|
||||
|DB|MobileNetV3|[configs/det/det_mv3_db.yml](../../configs/det/det_mv3_db.yml)|77.29%|73.08%|75.12%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
|
||||
|DB++|ResNet50|[configs/det/det_r50_db++_ic15.yml](../../configs/det/det_r50_db++_ic15.yml)|90.89%|82.66%|86.58%|[合成数据预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/ResNet50_dcn_asf_synthtext_pretrained.pdparams)/[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_db%2B%2B_icdar15_train.tar)|
|
||||
|
||||
在TD_TR文本检测公开数据集上,算法复现效果如下:
|
||||
|
||||
|模型|骨干网络|配置文件|precision|recall|Hmean|下载链接|
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
|DB++|ResNet50|[configs/det/det_r50_db++_td_tr.yml](../../configs/det/det_r50_db++_td_tr.yml)|92.92%|86.48%|89.58%|[合成数据预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/ResNet50_dcn_asf_synthtext_pretrained.pdparams)/[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_db%2B%2B_td_tr_train.tar)|
|
||||
|
||||
|
||||
<a name="2"></a>
|
||||
|
@ -96,4 +108,12 @@ DB模型还支持以下推理部署方式:
|
|||
pages={11474--11481},
|
||||
year={2020}
|
||||
}
|
||||
```
|
||||
|
||||
@article{liao2022real,
|
||||
title={Real-Time Scene Text Detection with Differentiable Binarization and Adaptive Scale Fusion},
|
||||
author={Liao, Minghui and Zou, Zhisheng and Wan, Zhaoyi and Yao, Cong and Bai, Xiang},
|
||||
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
|
||||
year={2022},
|
||||
publisher={IEEE}
|
||||
}
|
||||
```
|
||||
|
|
|
@ -34,6 +34,7 @@ json.dumps编码前的图像标注信息是包含多个字典的list,字典中
|
|||
| ICDAR 2015 |https://rrc.cvc.uab.es/?ch=4&com=downloads| [train](https://paddleocr.bj.bcebos.com/dataset/train_icdar2015_label.txt) / [test](https://paddleocr.bj.bcebos.com/dataset/test_icdar2015_label.txt) |
|
||||
| ctw1500 |https://paddleocr.bj.bcebos.com/dataset/ctw1500.zip| 图片下载地址中已包含 |
|
||||
| total text |https://paddleocr.bj.bcebos.com/dataset/total_text.tar| 图片下载地址中已包含 |
|
||||
| td tr |https://paddleocr.bj.bcebos.com/dataset/TD_TR.tar| 图片下载地址中已包含 |
|
||||
|
||||
#### 1.2.1 ICDAR 2015
|
||||
ICDAR 2015 数据集包含1000张训练图像和500张测试图像。ICDAR 2015 数据集可以从上表中链接下载,首次下载需注册。
|
||||
|
|
Loading…
Reference in New Issue