Merge pull request #7855 from tink2123/updata_paddle2onnx_doc
updata paddle2onnx en docpull/7832/head
commit
9f97dabf79
|
@ -1,63 +1,64 @@
|
|||
# Paddle2ONNX模型转化与预测
|
||||
# Paddle2ONNX model transformation and prediction
|
||||
|
||||
本章节介绍 PaddleOCR 模型如何转化为 ONNX 模型,并基于 ONNXRuntime 引擎预测。
|
||||
This chapter describes how the PaddleOCR model is converted into an ONNX model and predicted based on the ONNXRuntime engine.
|
||||
|
||||
## 1. 环境准备
|
||||
## 1. Environment preparation
|
||||
|
||||
需要准备 PaddleOCR、Paddle2ONNX 模型转化环境,和 ONNXRuntime 预测环境
|
||||
Need to prepare PaddleOCR, Paddle2ONNX model conversion environment, and ONNXRuntime prediction environment
|
||||
|
||||
### PaddleOCR
|
||||
|
||||
克隆PaddleOCR的仓库,使用release/2.4分支,并进行安装,由于PaddleOCR仓库比较大,git clone速度比较慢,所以本教程已下载
|
||||
Clone the PaddleOCR repository, use the release/2.6 branch, and install it.
|
||||
|
||||
```
|
||||
git clone -b release/2.4 https://github.com/PaddlePaddle/PaddleOCR.git
|
||||
git clone -b release/2.6 https://github.com/PaddlePaddle/PaddleOCR.git
|
||||
cd PaddleOCR && python3.7 setup.py install
|
||||
```
|
||||
|
||||
### Paddle2ONNX
|
||||
|
||||
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式,算子目前稳定支持导出 ONNX Opset 9~11,部分Paddle算子支持更低的ONNX Opset转换。
|
||||
更多细节可参考 [Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX/blob/develop/README_zh.md)
|
||||
Paddle2ONNX supports converting the PaddlePaddle model format to the ONNX model format. The operator currently supports exporting ONNX Opset 9~11 stably, and some Paddle operators support lower ONNX Opset conversion.
|
||||
For more details, please refer to [Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX/blob/develop/README_en.md)
|
||||
|
||||
- 安装 Paddle2ONNX
|
||||
|
||||
- install Paddle2ONNX
|
||||
```
|
||||
python3.7 -m pip install paddle2onnx
|
||||
```
|
||||
|
||||
- 安装 ONNXRuntime
|
||||
- install ONNXRuntime
|
||||
```
|
||||
# 建议安装 1.9.0 版本,可根据环境更换版本号
|
||||
# It is recommended to install version 1.9.0, and the version number can be changed according to the environment
|
||||
python3.7 -m pip install onnxruntime==1.9.0
|
||||
```
|
||||
|
||||
## 2. 模型转换
|
||||
## 2. Model conversion
|
||||
|
||||
|
||||
- Paddle 模型下载
|
||||
- Paddle model download
|
||||
|
||||
有两种方式获取Paddle静态图模型:在 [model_list](../../doc/doc_ch/models_list.md) 中下载PaddleOCR提供的预测模型;
|
||||
参考[模型导出说明](../../doc/doc_ch/inference.md#训练模型转inference模型)把训练好的权重转为 inference_model。
|
||||
There are two ways to obtain the Paddle model: Download the prediction model provided by PaddleOCR in [model_list](../../doc/doc_en/models_list_en.md);
|
||||
Refer to [Model Export Instructions](../../doc/doc_en/inference_en.md#1-convert-training-model-to-inference-model) to convert the trained weights to inference_model.
|
||||
|
||||
以 ppocr 中文检测、识别、分类模型为例:
|
||||
Take the PP-OCRv3 detection, recognition, and classification model as an example:
|
||||
|
||||
```
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar
|
||||
cd ./inference && tar xf ch_PP-OCRv2_det_infer.tar && cd ..
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar
|
||||
cd ./inference && tar xf en_PP-OCRv3_det_infer.tar && cd ..
|
||||
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar
|
||||
cd ./inference && tar xf ch_PP-OCRv2_rec_infer.tar && cd ..
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_infer.tar
|
||||
cd ./inference && tar xf en_PP-OCRv3_rec_infer.tar && cd ..
|
||||
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
|
||||
cd ./inference && tar xf ch_ppocr_mobile_v2.0_cls_infer.tar && cd ..
|
||||
```
|
||||
|
||||
- 模型转换
|
||||
- convert model
|
||||
|
||||
使用 Paddle2ONNX 将Paddle静态图模型转换为ONNX模型格式:
|
||||
Convert Paddle inference model to ONNX model format using Paddle2ONNX:
|
||||
|
||||
```
|
||||
paddle2onnx --model_dir ./inference/ch_PP-OCRv2_det_infer \
|
||||
paddle2onnx --model_dir ./inference/en_PP-OCRv3_det_infer \
|
||||
--model_filename inference.pdmodel \
|
||||
--params_filename inference.pdiparams \
|
||||
--save_file ./inference/det_onnx/model.onnx \
|
||||
|
@ -65,7 +66,7 @@ paddle2onnx --model_dir ./inference/ch_PP-OCRv2_det_infer \
|
|||
--input_shape_dict="{'x':[-1,3,-1,-1]}" \
|
||||
--enable_onnx_checker True
|
||||
|
||||
paddle2onnx --model_dir ./inference/ch_PP-OCRv2_rec_infer \
|
||||
paddle2onnx --model_dir ./inference/en_PP-OCRv3_rec_infer \
|
||||
--model_filename inference.pdmodel \
|
||||
--params_filename inference.pdiparams \
|
||||
--save_file ./inference/rec_onnx/model.onnx \
|
||||
|
@ -81,136 +82,89 @@ paddle2onnx --model_dir ./inference/ch_ppocr_mobile_v2.0_cls_infer \
|
|||
--input_shape_dict="{'x':[-1,3,-1,-1]}" \
|
||||
--enable_onnx_checker True
|
||||
```
|
||||
After execution, the ONNX model will be saved in `./inference/det_onnx/`, `./inference/rec_onnx/`, `./inference/cls_onnx/` paths respectively
|
||||
|
||||
执行完毕后,ONNX 模型会被分别保存在 `./inference/det_onnx/`,`./inference/rec_onnx/`,`./inference/cls_onnx/`路径下
|
||||
* Note: For the OCR model, the conversion process must be in the form of dynamic shape, that is, add the option --input_shape_dict="{'x': [-1, 3, -1, -1]}", otherwise the prediction result may be the same as Predicting directly with Paddle is slightly different.
|
||||
In addition, the following models do not currently support conversion to ONNX models:
|
||||
NRTR, SAR, RARE, SRN
|
||||
|
||||
* 注意:对于OCR模型,转化过程中必须采用动态shape的形式,即加入选项--input_shape_dict="{'x': [-1, 3, -1, -1]}",否则预测结果可能与直接使用Paddle预测有细微不同。
|
||||
另外,以下几个模型暂不支持转换为 ONNX 模型:
|
||||
NRTR、SAR、RARE、SRN
|
||||
## 3. prediction
|
||||
|
||||
## 3. 推理预测
|
||||
|
||||
以中文OCR模型为例,使用 ONNXRuntime 预测可执行如下命令:
|
||||
Take the English OCR model as an example, use **ONNXRuntime** to predict and execute the following commands:
|
||||
|
||||
```
|
||||
python3.7 tools/infer/predict_system.py --use_gpu=False --use_onnx=True \
|
||||
--det_model_dir=./inference/det_onnx/model.onnx \
|
||||
--rec_model_dir=./inference/rec_onnx/model.onnx \
|
||||
--cls_model_dir=./inference/cls_onnx/model.onnx \
|
||||
--image_dir=./deploy/lite/imgs/lite_demo.png
|
||||
--image_dir=doc/imgs_en/img_12.jpg \
|
||||
--rec_char_dict_path=ppocr/utils/en_dict.txt
|
||||
```
|
||||
|
||||
以中文OCR模型为例,使用 Paddle Inference 预测可执行如下命令:
|
||||
Taking the English OCR model as an example, use **Paddle Inference** to predict and execute the following commands:
|
||||
|
||||
```
|
||||
python3.7 tools/infer/predict_system.py --use_gpu=False \
|
||||
--cls_model_dir=./inference/ch_ppocr_mobile_v2.0_cls_infer \
|
||||
--rec_model_dir=./inference/ch_PP-OCRv2_rec_infer \
|
||||
--det_model_dir=./inference/ch_PP-OCRv2_det_infer \
|
||||
--image_dir=./deploy/lite/imgs/lite_demo.png
|
||||
--rec_model_dir=./inference/en_PP-OCRv3_rec_infer \
|
||||
--det_model_dir=./inference/en_PP-OCRv3_det_infer \
|
||||
--image_dir=doc/imgs_en/img_12.jpg \
|
||||
--rec_char_dict_path=ppocr/utils/en_dict.txt
|
||||
```
|
||||
|
||||
|
||||
执行命令后在终端会打印出预测的识别信息,并在 `./inference_results/` 下保存可视化结果。
|
||||
After executing the command, the predicted identification information will be printed out in the terminal, and the visualization results will be saved under `./inference_results/`.
|
||||
|
||||
ONNXRuntime 执行效果:
|
||||
ONNXRuntime result:
|
||||
|
||||
<div align="center">
|
||||
<img src="./images/lite_demo_onnx.png" width=800">
|
||||
<img src="../../doc/imgs_results/multi_lang/img_12.jpg" width=800">
|
||||
</div>
|
||||
|
||||
Paddle Inference 执行效果:
|
||||
Paddle Inference result:
|
||||
|
||||
<div align="center">
|
||||
<img src="./images/lite_demo_paddle.png" width=800">
|
||||
<img src="../../doc/imgs_results/multi_lang/img_12.jpg" width=800">
|
||||
</div>
|
||||
|
||||
|
||||
使用 ONNXRuntime 预测,终端输出:
|
||||
Using ONNXRuntime to predict, terminal output:
|
||||
```
|
||||
[2022/02/22 17:48:27] root DEBUG: dt_boxes num : 38, elapse : 0.043187856674194336
|
||||
[2022/02/22 17:48:27] root DEBUG: rec_res num : 38, elapse : 0.592170000076294
|
||||
[2022/02/22 17:48:27] root DEBUG: 0 Predict time of ./deploy/lite/imgs/lite_demo.png: 0.642s
|
||||
[2022/02/22 17:48:27] root DEBUG: The, 0.984
|
||||
[2022/02/22 17:48:27] root DEBUG: visualized, 0.882
|
||||
[2022/02/22 17:48:27] root DEBUG: etect18片, 0.720
|
||||
[2022/02/22 17:48:27] root DEBUG: image saved in./vis.jpg, 0.947
|
||||
[2022/02/22 17:48:27] root DEBUG: 纯臻营养护发素0.993604, 0.996
|
||||
[2022/02/22 17:48:27] root DEBUG: 产品信息/参数, 0.922
|
||||
[2022/02/22 17:48:27] root DEBUG: 0.992728, 0.914
|
||||
[2022/02/22 17:48:27] root DEBUG: (45元/每公斤,100公斤起订), 0.926
|
||||
[2022/02/22 17:48:27] root DEBUG: 0.97417, 0.977
|
||||
[2022/02/22 17:48:27] root DEBUG: 每瓶22元,1000瓶起订)0.993976, 0.962
|
||||
[2022/02/22 17:48:27] root DEBUG: 【品牌】:代加工方式/0EMODM, 0.945
|
||||
[2022/02/22 17:48:27] root DEBUG: 0.985133, 0.980
|
||||
[2022/02/22 17:48:27] root DEBUG: 【品名】:纯臻营养护发素, 0.921
|
||||
[2022/02/22 17:48:27] root DEBUG: 0.995007, 0.883
|
||||
[2022/02/22 17:48:27] root DEBUG: 【产品编号】:YM-X-30110.96899, 0.955
|
||||
[2022/02/22 17:48:27] root DEBUG: 【净含量】:220ml, 0.943
|
||||
[2022/02/22 17:48:27] root DEBUG: Q.996577, 0.932
|
||||
[2022/02/22 17:48:27] root DEBUG: 【适用人群】:适合所有肤质, 0.913
|
||||
[2022/02/22 17:48:27] root DEBUG: 0.995842, 0.969
|
||||
[2022/02/22 17:48:27] root DEBUG: 【主要成分】:鲸蜡硬脂醇、燕麦B-葡聚, 0.883
|
||||
[2022/02/22 17:48:27] root DEBUG: 0.961928, 0.964
|
||||
[2022/02/22 17:48:27] root DEBUG: 10, 0.812
|
||||
[2022/02/22 17:48:27] root DEBUG: 糖、椰油酰胺丙基甜菜碱、泛醒, 0.866
|
||||
[2022/02/22 17:48:27] root DEBUG: 0.925898, 0.943
|
||||
[2022/02/22 17:48:27] root DEBUG: (成品包材), 0.974
|
||||
[2022/02/22 17:48:27] root DEBUG: 0.972573, 0.961
|
||||
[2022/02/22 17:48:27] root DEBUG: 【主要功能】:可紧致头发磷层,从而达到, 0.936
|
||||
[2022/02/22 17:48:27] root DEBUG: 0.994448, 0.952
|
||||
[2022/02/22 17:48:27] root DEBUG: 13, 0.998
|
||||
[2022/02/22 17:48:27] root DEBUG: 即时持久改善头发光泽的效果,给干燥的头, 0.994
|
||||
[2022/02/22 17:48:27] root DEBUG: 0.990198, 0.975
|
||||
[2022/02/22 17:48:27] root DEBUG: 14, 0.977
|
||||
[2022/02/22 17:48:27] root DEBUG: 发足够的滋养, 0.991
|
||||
[2022/02/22 17:48:27] root DEBUG: 0.997668, 0.918
|
||||
[2022/02/22 17:48:27] root DEBUG: 花费了0.457335秒, 0.901
|
||||
[2022/02/22 17:48:27] root DEBUG: The visualized image saved in ./inference_results/lite_demo.png
|
||||
[2022/02/22 17:48:27] root INFO: The predict total time is 0.7003889083862305
|
||||
[2022/10/10 12:06:28] ppocr DEBUG: dt_boxes num : 11, elapse : 0.3568880558013916
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: rec_res num : 11, elapse : 2.6445000171661377
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: 0 Predict time of doc/imgs_en/img_12.jpg: 3.021s
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: ACKNOWLEDGEMENTS, 0.997
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: We would like to thank all the designers and, 0.976
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: contributors who have been involved in the, 0.979
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: production of this book; their contributions, 0.989
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: have been indispensable to its creation. We, 0.956
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: would also like to express our gratitude to all, 0.991
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: the producers for their invaluable opinions, 0.978
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: and assistance throughout this project. And to, 0.988
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: the many others whose names are not credited, 0.958
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: but have made specific input in this book, we, 0.970
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: thank you for your continuous support., 0.998
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: The visualized image saved in ./inference_results/img_12.jpg
|
||||
[2022/10/10 12:06:31] ppocr INFO: The predict total time is 3.2482550144195557
|
||||
```
|
||||
|
||||
使用 Paddle Inference 预测,终端输出:
|
||||
Using Paddle Inference to predict, terminal output:
|
||||
|
||||
```
|
||||
[2022/02/22 17:47:25] root DEBUG: dt_boxes num : 38, elapse : 0.11791276931762695
|
||||
[2022/02/22 17:47:27] root DEBUG: rec_res num : 38, elapse : 2.6206860542297363
|
||||
[2022/02/22 17:47:27] root DEBUG: 0 Predict time of ./deploy/lite/imgs/lite_demo.png: 2.746s
|
||||
[2022/02/22 17:47:27] root DEBUG: The, 0.984
|
||||
[2022/02/22 17:47:27] root DEBUG: visualized, 0.882
|
||||
[2022/02/22 17:47:27] root DEBUG: etect18片, 0.720
|
||||
[2022/02/22 17:47:27] root DEBUG: image saved in./vis.jpg, 0.947
|
||||
[2022/02/22 17:47:27] root DEBUG: 纯臻营养护发素0.993604, 0.996
|
||||
[2022/02/22 17:47:27] root DEBUG: 产品信息/参数, 0.922
|
||||
[2022/02/22 17:47:27] root DEBUG: 0.992728, 0.914
|
||||
[2022/02/22 17:47:27] root DEBUG: (45元/每公斤,100公斤起订), 0.926
|
||||
[2022/02/22 17:47:27] root DEBUG: 0.97417, 0.977
|
||||
[2022/02/22 17:47:27] root DEBUG: 每瓶22元,1000瓶起订)0.993976, 0.962
|
||||
[2022/02/22 17:47:27] root DEBUG: 【品牌】:代加工方式/0EMODM, 0.945
|
||||
[2022/02/22 17:47:27] root DEBUG: 0.985133, 0.980
|
||||
[2022/02/22 17:47:27] root DEBUG: 【品名】:纯臻营养护发素, 0.921
|
||||
[2022/02/22 17:47:27] root DEBUG: 0.995007, 0.883
|
||||
[2022/02/22 17:47:27] root DEBUG: 【产品编号】:YM-X-30110.96899, 0.955
|
||||
[2022/02/22 17:47:27] root DEBUG: 【净含量】:220ml, 0.943
|
||||
[2022/02/22 17:47:27] root DEBUG: Q.996577, 0.932
|
||||
[2022/02/22 17:47:27] root DEBUG: 【适用人群】:适合所有肤质, 0.913
|
||||
[2022/02/22 17:47:27] root DEBUG: 0.995842, 0.969
|
||||
[2022/02/22 17:47:27] root DEBUG: 【主要成分】:鲸蜡硬脂醇、燕麦B-葡聚, 0.883
|
||||
[2022/02/22 17:47:27] root DEBUG: 0.961928, 0.964
|
||||
[2022/02/22 17:47:27] root DEBUG: 10, 0.812
|
||||
[2022/02/22 17:47:27] root DEBUG: 糖、椰油酰胺丙基甜菜碱、泛醒, 0.866
|
||||
[2022/02/22 17:47:27] root DEBUG: 0.925898, 0.943
|
||||
[2022/02/22 17:47:27] root DEBUG: (成品包材), 0.974
|
||||
[2022/02/22 17:47:27] root DEBUG: 0.972573, 0.961
|
||||
[2022/02/22 17:47:27] root DEBUG: 【主要功能】:可紧致头发磷层,从而达到, 0.936
|
||||
[2022/02/22 17:47:27] root DEBUG: 0.994448, 0.952
|
||||
[2022/02/22 17:47:27] root DEBUG: 13, 0.998
|
||||
[2022/02/22 17:47:27] root DEBUG: 即时持久改善头发光泽的效果,给干燥的头, 0.994
|
||||
[2022/02/22 17:47:27] root DEBUG: 0.990198, 0.975
|
||||
[2022/02/22 17:47:27] root DEBUG: 14, 0.977
|
||||
[2022/02/22 17:47:27] root DEBUG: 发足够的滋养, 0.991
|
||||
[2022/02/22 17:47:27] root DEBUG: 0.997668, 0.918
|
||||
[2022/02/22 17:47:27] root DEBUG: 花费了0.457335秒, 0.901
|
||||
[2022/02/22 17:47:27] root DEBUG: The visualized image saved in ./inference_results/lite_demo.png
|
||||
[2022/02/22 17:47:27] root INFO: The predict total time is 2.8338775634765625
|
||||
[2022/10/10 12:06:28] ppocr DEBUG: dt_boxes num : 11, elapse : 0.3568880558013916
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: rec_res num : 11, elapse : 2.6445000171661377
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: 0 Predict time of doc/imgs_en/img_12.jpg: 3.021s
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: ACKNOWLEDGEMENTS, 0.997
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: We would like to thank all the designers and, 0.976
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: contributors who have been involved in the, 0.979
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: production of this book; their contributions, 0.989
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: have been indispensable to its creation. We, 0.956
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: would also like to express our gratitude to all, 0.991
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: the producers for their invaluable opinions, 0.978
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: and assistance throughout this project. And to, 0.988
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: the many others whose names are not credited, 0.958
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: but have made specific input in this book, we, 0.970
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: thank you for your continuous support., 0.998
|
||||
[2022/10/10 12:06:31] ppocr DEBUG: The visualized image saved in ./inference_results/img_12.jpg
|
||||
[2022/10/10 12:06:31] ppocr INFO: The predict total time is 3.2482550144195557
|
||||
```
|
||||
|
|
Loading…
Reference in New Issue