use paddlepaddle license
parent
835e717832
commit
a4b0241a90
|
@ -1,6 +1,17 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
# @Time : 3/29/19 11:03 AM
|
||||
# @Author : zhoujun
|
||||
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import paddle
|
||||
from paddle import nn
|
||||
from paddle.nn import functional as F
|
||||
|
@ -9,7 +20,12 @@ from ppocr.utils.iou import iou
|
|||
|
||||
|
||||
class PSELoss(nn.Layer):
|
||||
def __init__(self, alpha, ohem_ratio=3, kernel_sample_mask='pred', reduction='sum', **kwargs):
|
||||
def __init__(self,
|
||||
alpha,
|
||||
ohem_ratio=3,
|
||||
kernel_sample_mask='pred',
|
||||
reduction='sum',
|
||||
**kwargs):
|
||||
"""Implement PSE Loss.
|
||||
"""
|
||||
super(PSELoss, self).__init__()
|
||||
|
@ -31,32 +47,32 @@ class PSELoss(nn.Layer):
|
|||
selected_masks = self.ohem_batch(texts, gt_texts, training_masks)
|
||||
|
||||
loss_text = self.dice_loss(texts, gt_texts, selected_masks)
|
||||
iou_text = iou((texts > 0).astype('int64'), gt_texts, training_masks, reduce=False)
|
||||
losses = dict(
|
||||
loss_text=loss_text,
|
||||
iou_text=iou_text
|
||||
)
|
||||
iou_text = iou((texts > 0).astype('int64'),
|
||||
gt_texts,
|
||||
training_masks,
|
||||
reduce=False)
|
||||
losses = dict(loss_text=loss_text, iou_text=iou_text)
|
||||
|
||||
# kernel loss
|
||||
loss_kernels = []
|
||||
if self.kernel_sample_mask == 'gt':
|
||||
selected_masks = gt_texts * training_masks
|
||||
elif self.kernel_sample_mask == 'pred':
|
||||
selected_masks = (F.sigmoid(texts) > 0.5).astype('float32') * training_masks
|
||||
selected_masks = (
|
||||
F.sigmoid(texts) > 0.5).astype('float32') * training_masks
|
||||
|
||||
for i in range(kernels.shape[1]):
|
||||
kernel_i = kernels[:, i, :, :]
|
||||
gt_kernel_i = gt_kernels[:, i, :, :]
|
||||
loss_kernel_i = self.dice_loss(kernel_i, gt_kernel_i, selected_masks)
|
||||
loss_kernel_i = self.dice_loss(kernel_i, gt_kernel_i,
|
||||
selected_masks)
|
||||
loss_kernels.append(loss_kernel_i)
|
||||
loss_kernels = paddle.mean(paddle.stack(loss_kernels, axis=1), axis=1)
|
||||
iou_kernel = iou(
|
||||
(kernels[:, -1, :, :] > 0).astype('int64'), gt_kernels[:, -1, :, :], training_masks * gt_texts,
|
||||
reduce=False)
|
||||
losses.update(dict(
|
||||
loss_kernels=loss_kernels,
|
||||
iou_kernel=iou_kernel
|
||||
))
|
||||
iou_kernel = iou((kernels[:, -1, :, :] > 0).astype('int64'),
|
||||
gt_kernels[:, -1, :, :],
|
||||
training_masks * gt_texts,
|
||||
reduce=False)
|
||||
losses.update(dict(loss_kernels=loss_kernels, iou_kernel=iou_kernel))
|
||||
loss = self.alpha * loss_text + (1 - self.alpha) * loss_kernels
|
||||
losses['loss'] = loss
|
||||
if self.reduction == 'sum':
|
||||
|
@ -83,13 +99,16 @@ class PSELoss(nn.Layer):
|
|||
|
||||
def ohem_single(self, score, gt_text, training_mask, ohem_ratio=3):
|
||||
pos_num = int(paddle.sum((gt_text > 0.5).astype('float32'))) - int(
|
||||
paddle.sum(paddle.logical_and((gt_text > 0.5), (training_mask <= 0.5)).astype('float32')))
|
||||
paddle.sum(
|
||||
paddle.logical_and((gt_text > 0.5), (training_mask <= 0.5))
|
||||
.astype('float32')))
|
||||
|
||||
if pos_num == 0:
|
||||
# selected_mask = gt_text.copy() * 0 # may be not good
|
||||
selected_mask = training_mask
|
||||
selected_mask = selected_mask.reshape([1, selected_mask.shape[0], selected_mask.shape[1]]).astype(
|
||||
'float32')
|
||||
selected_mask = selected_mask.reshape(
|
||||
[1, selected_mask.shape[0], selected_mask.shape[1]]).astype(
|
||||
'float32')
|
||||
return selected_mask
|
||||
|
||||
neg_num = int(paddle.sum((gt_text <= 0.5).astype('float32')))
|
||||
|
@ -97,23 +116,29 @@ class PSELoss(nn.Layer):
|
|||
|
||||
if neg_num == 0:
|
||||
selected_mask = training_mask
|
||||
selected_mask = selected_mask.view(1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32')
|
||||
selected_mask = selected_mask.view(
|
||||
1, selected_mask.shape[0],
|
||||
selected_mask.shape[1]).astype('float32')
|
||||
return selected_mask
|
||||
|
||||
neg_score = paddle.masked_select(score, gt_text <= 0.5)
|
||||
neg_score_sorted = paddle.sort(-neg_score)
|
||||
threshold = -neg_score_sorted[neg_num - 1]
|
||||
|
||||
selected_mask = paddle.logical_and(paddle.logical_or((score >= threshold), (gt_text > 0.5)),
|
||||
(training_mask > 0.5))
|
||||
selected_mask = selected_mask.reshape([1, selected_mask.shape[0], selected_mask.shape[1]]).astype('float32')
|
||||
selected_mask = paddle.logical_and(
|
||||
paddle.logical_or((score >= threshold), (gt_text > 0.5)),
|
||||
(training_mask > 0.5))
|
||||
selected_mask = selected_mask.reshape(
|
||||
[1, selected_mask.shape[0], selected_mask.shape[1]]).astype(
|
||||
'float32')
|
||||
return selected_mask
|
||||
|
||||
def ohem_batch(self, scores, gt_texts, training_masks, ohem_ratio=3):
|
||||
selected_masks = []
|
||||
for i in range(scores.shape[0]):
|
||||
selected_masks.append(
|
||||
self.ohem_single(scores[i, :, :], gt_texts[i, :, :], training_masks[i, :, :], ohem_ratio))
|
||||
self.ohem_single(scores[i, :, :], gt_texts[i, :, :],
|
||||
training_masks[i, :, :], ohem_ratio))
|
||||
|
||||
selected_masks = paddle.concat(selected_masks, 0).astype('float32')
|
||||
return selected_masks
|
||||
return selected_masks
|
||||
|
|
Loading…
Reference in New Issue