mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-06-03 21:53:39 +08:00
Synchronize docs
This commit is contained in:
parent
1e0d223049
commit
b4b2107c4d
@ -273,7 +273,7 @@ python3 tools/export_model.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o G
|
||||
CRNN 文本识别模型推理,可以执行如下命令:
|
||||
|
||||
```
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/rec_crnn/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/rec_crnn/" --rec_image_shape="3, 32, 100" --rec_char_dict_path="./ppocr/utils/ic15_dict.txt"
|
||||
```
|
||||
|
||||

|
||||
@ -288,7 +288,7 @@ Predicts of ./doc/imgs_words_en/word_336.png:('super', 0.9999073)
|
||||
|
||||
- 训练时采用的图像分辨率不同,训练上述模型采用的图像分辨率是[3,32,100],而中文模型训练时,为了保证长文本的识别效果,训练时采用的图像分辨率是[3, 32, 320]。预测推理程序默认的的形状参数是训练中文采用的图像分辨率,即[3, 32, 320]。因此,这里推理上述英文模型时,需要通过参数rec_image_shape设置识别图像的形状。
|
||||
|
||||
- 字符列表,DTRB论文中实验只是针对26个小写英文本母和10个数字进行实验,总共36个字符。所有大小字符都转成了小写字符,不在上面列表的字符都忽略,认为是空格。因此这里没有输入字符字典,而是通过如下命令生成字典.因此在推理时需要设置参数rec_char_type,指定为英文"en"。
|
||||
- 字符列表,DTRB论文中实验只是针对26个小写英文本母和10个数字进行实验,总共36个字符。所有大小字符都转成了小写字符,不在上面列表的字符都忽略,认为是空格。因此这里没有输入字符字典,而是通过如下命令生成字典。因此在推理时需要设置参数rec_char_dict_path,指定为英文字典"./ppocr/utils/ic15_dict.txt指定为英文"en"。
|
||||
|
||||
```
|
||||
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
|
||||
@ -303,15 +303,15 @@ dict_character = list(self.character_str)
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" \
|
||||
--rec_model_dir="./inference/srn/" \
|
||||
--rec_image_shape="1, 64, 256" \
|
||||
--rec_char_type="en" \
|
||||
--rec_char_dict_path="./ppocr/utils/ic15_dict.txt" \
|
||||
--rec_algorithm="SRN"
|
||||
```
|
||||
|
||||
### 4. 自定义文本识别字典的推理
|
||||
如果训练时修改了文本的字典,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径,并且设置 `rec_char_type=ch`
|
||||
如果训练时修改了文本的字典,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径
|
||||
|
||||
```
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path"
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_dict_path="your text dict path"
|
||||
```
|
||||
|
||||
<a name="多语言模型的推理"></a>
|
||||
@ -320,7 +320,7 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png
|
||||
需要通过 `--vis_font_path` 指定可视化的字体路径,`doc/fonts/` 路径下有默认提供的小语种字体,例如韩文识别:
|
||||
|
||||
```
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_type="korean" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf"
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf"
|
||||
```
|
||||

|
||||
|
||||
|
@ -33,7 +33,7 @@ ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/dataset
|
||||
mklink /d <path/to/paddle_ocr>/train_data/dataset <path/to/dataset>
|
||||
```
|
||||
|
||||
<a name="自定义数据集"></a>
|
||||
<a name="准备数据集"></a>
|
||||
### 1.1 自定义数据集
|
||||
下面以通用数据集为例, 介绍如何准备数据集:
|
||||
|
||||
@ -86,7 +86,10 @@ train_data/rec/train/word_002.jpg 用科技让复杂的世界更简单
|
||||
|
||||
若您本地没有数据集,可以在官网下载 [ICDAR2015](http://rrc.cvc.uab.es/?ch=4&com=downloads) 数据,用于快速验证。也可以参考[DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here) ,下载 benchmark 所需的lmdb格式数据集。
|
||||
|
||||
如果希望复现SAR的论文指标,需要下载[SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg), 提取码:627x。此外,真实数据集icdar2013, icdar2015, cocotext, IIIT5也作为训练数据的一部分。具体数据细节可以参考论文SAR。
|
||||
|
||||
如果你使用的是icdar2015的公开数据集,PaddleOCR 提供了一份用于训练 ICDAR2015 数据集的标签文件,通过以下方式下载:
|
||||
|
||||
```
|
||||
# 训练集标签
|
||||
wget -P ./train_data/ic15_data https://paddleocr.bj.bcebos.com/dataset/rec_gt_train.txt
|
||||
@ -156,7 +159,6 @@ PaddleOCR内置了一部分字典,可以按需使用。
|
||||
- 自定义字典
|
||||
|
||||
如需自定义dic文件,请在 `configs/rec/rec_icdar15_train.yml` 中添加 `character_dict_path` 字段, 指向您的字典路径。
|
||||
并将 `character_type` 设置为 `ch`。
|
||||
|
||||
<a name="支持空格"></a>
|
||||
### 1.4 添加空格类别
|
||||
@ -230,6 +232,10 @@ PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/rec_icdar15_t
|
||||
| rec_r34_vd_tps_bilstm_att.yml | CRNN | Resnet34_vd | TPS | BiLSTM | att |
|
||||
| rec_r50fpn_vd_none_srn.yml | SRN | Resnet50_fpn_vd | None | rnn | srn |
|
||||
| rec_mtb_nrtr.yml | NRTR | nrtr_mtb | None | transformer encoder | transformer decoder |
|
||||
| rec_r31_sar.yml | SAR | ResNet31 | None | LSTM encoder | LSTM decoder |
|
||||
| rec_resnet_stn_bilstm_att.yml | SEED | Aster_Resnet | STN | BiLSTM | att |
|
||||
|
||||
*其中SEED模型需要额外加载FastText训练好的[语言模型](https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.en.300.bin.gz)
|
||||
|
||||
训练中文数据,推荐使用[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml),如您希望尝试其他算法在中文数据集上的效果,请参考下列说明修改配置文件:
|
||||
|
||||
@ -239,8 +245,6 @@ Global:
|
||||
...
|
||||
# 添加自定义字典,如修改字典请将路径指向新字典
|
||||
character_dict_path: ppocr/utils/ppocr_keys_v1.txt
|
||||
# 修改字符类型
|
||||
character_type: ch
|
||||
...
|
||||
# 识别空格
|
||||
use_space_char: True
|
||||
@ -304,18 +308,18 @@ PaddleOCR目前已支持80种(除中文外)语种识别,`configs/rec/multi
|
||||
|
||||
按语系划分,目前PaddleOCR支持的语种有:
|
||||
|
||||
| 配置文件 | 算法名称 | backbone | trans | seq | pred | language | character_type |
|
||||
| :--------: | :-------: | :-------: | :-------: | :-----: | :-----: | :-----: | :-----: |
|
||||
| rec_chinese_cht_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 中文繁体 | chinese_cht|
|
||||
| rec_en_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 英语(区分大小写) | EN |
|
||||
| rec_french_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 法语 | french |
|
||||
| rec_ger_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 德语 | german |
|
||||
| rec_japan_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 日语 | japan |
|
||||
| rec_korean_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 韩语 | korean |
|
||||
| rec_latin_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 拉丁字母 | latin |
|
||||
| rec_arabic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 阿拉伯字母 | ar |
|
||||
| rec_cyrillic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 斯拉夫字母 | cyrillic |
|
||||
| rec_devanagari_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 梵文字母 | devanagari |
|
||||
| 配置文件 | 算法名称 | backbone | trans | seq | pred | language |
|
||||
| :--------: | :-------: | :-------: | :-------: | :-----: | :-----: | :-----: |
|
||||
| rec_chinese_cht_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 中文繁体 |
|
||||
| rec_en_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 英语(区分大小写) |
|
||||
| rec_french_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 法语 |
|
||||
| rec_ger_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 德语 |
|
||||
| rec_japan_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 日语 |
|
||||
| rec_korean_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 韩语 |
|
||||
| rec_latin_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 拉丁字母 |
|
||||
| rec_arabic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 阿拉伯字母 |
|
||||
| rec_cyrillic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 斯拉夫字母 |
|
||||
| rec_devanagari_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 梵文字母 |
|
||||
|
||||
更多支持语种请参考: [多语言模型](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_ch/multi_languages.md#%E8%AF%AD%E7%A7%8D%E7%BC%A9%E5%86%99)
|
||||
|
||||
@ -456,5 +460,3 @@ python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_trai
|
||||
```
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path"
|
||||
```
|
||||
|
||||
|
||||
|
@ -137,3 +137,14 @@ PaddleOCR主要聚焦通用OCR,如果有垂类需求,您可以用PaddleOCR+
|
||||
|
||||
A:识别模型训练初期acc为0是正常的,多训一段时间指标就上来了。
|
||||
|
||||
|
||||
|
||||
***
|
||||
|
||||
具体的训练教程可点击下方链接跳转:
|
||||
|
||||
\- [文本检测模型训练](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/doc/doc_ch/detection.md)
|
||||
|
||||
\- [文本识别模型训练](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/doc/doc_ch/recognition.md)
|
||||
|
||||
\- [文本方向分类器训练](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/doc/doc_ch/angle_class.md)
|
||||
|
@ -21,7 +21,7 @@ Next, we first introduce how to convert a trained model into an inference model,
|
||||
- [2.2 DB Text Detection Model Inference](#DB_DETECTION)
|
||||
- [2.3 East Text Detection Model Inference](#EAST_DETECTION)
|
||||
- [2.4 Sast Text Detection Model Inference](#SAST_DETECTION)
|
||||
|
||||
|
||||
- [3. Text Recognition Model Inference](#RECOGNITION_MODEL_INFERENCE)
|
||||
- [3.1 Lightweight Chinese Text Recognition Model Reference](#LIGHTWEIGHT_RECOGNITION)
|
||||
- [3.2 CTC-Based Text Recognition Model Inference](#CTC-BASED_RECOGNITION)
|
||||
@ -281,7 +281,7 @@ python3 tools/export_model.py -c configs/det/rec_r34_vd_none_bilstm_ctc.yml -o G
|
||||
For CRNN text recognition model inference, execute the following commands:
|
||||
|
||||
```
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_dict_path="./ppocr/utils/ic15_dict.txt"
|
||||
```
|
||||
|
||||

|
||||
@ -314,7 +314,7 @@ with the training, such as: --rec_image_shape="1, 64, 256"
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" \
|
||||
--rec_model_dir="./inference/srn/" \
|
||||
--rec_image_shape="1, 64, 256" \
|
||||
--rec_char_type="en" \
|
||||
--rec_char_dict_path="./ppocr/utils/ic15_dict.txt" \
|
||||
--rec_algorithm="SRN"
|
||||
```
|
||||
|
||||
@ -323,7 +323,7 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png
|
||||
If the text dictionary is modified during training, when using the inference model to predict, you need to specify the dictionary path used by `--rec_char_dict_path`, and set `rec_char_type=ch`
|
||||
|
||||
```
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path"
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_dict_path="your text dict path"
|
||||
```
|
||||
|
||||
<a name="MULTILINGUAL_MODEL_INFERENCE"></a>
|
||||
@ -333,7 +333,7 @@ If you need to predict other language models, when using inference model predict
|
||||
You need to specify the visual font path through `--vis_font_path`. There are small language fonts provided by default under the `doc/fonts` path, such as Korean recognition:
|
||||
|
||||
```
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_type="korean" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf"
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf"
|
||||
```
|
||||

|
||||
|
||||
@ -399,7 +399,7 @@ If you want to try other detection algorithms or recognition algorithms, please
|
||||
The following command uses the combination of the EAST text detection and STAR-Net text recognition:
|
||||
|
||||
```
|
||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
|
||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_east/" --det_algorithm="EAST" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_dict_path="./ppocr/utils/ic15_dict.txt"
|
||||
```
|
||||
|
||||
After executing the command, the recognition result image is as follows:
|
||||
|
@ -91,6 +91,8 @@ Similar to the training set, the test set also needs to be provided a folder con
|
||||
If you do not have a dataset locally, you can download it on the official website [icdar2015](http://rrc.cvc.uab.es/?ch=4&com=downloads).
|
||||
Also refer to [DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here) ,download the lmdb format dataset required for benchmark
|
||||
|
||||
If you want to reproduce the paper SAR, you need to download extra dataset [SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg), extraction code: 627x. Besides, icdar2013, icdar2015, cocotext, IIIT5k datasets are also used to train. For specific details, please refer to the paper SAR.
|
||||
|
||||
PaddleOCR provides label files for training the icdar2015 dataset, which can be downloaded in the following ways:
|
||||
|
||||
```
|
||||
@ -159,7 +161,7 @@ The current multi-language model is still in the demo stage and will continue to
|
||||
If you like, you can submit the dictionary file to [dict](../../ppocr/utils/dict) and we will thank you in the Repo.
|
||||
|
||||
|
||||
To customize the dict file, please modify the `character_dict_path` field in `configs/rec/rec_icdar15_train.yml` and set `character_type` to `ch`.
|
||||
To customize the dict file, please modify the `character_dict_path` field in `configs/rec/rec_icdar15_train.yml` .
|
||||
|
||||
- Custom dictionary
|
||||
|
||||
@ -170,8 +172,6 @@ If you need to customize dic file, please add character_dict_path field in confi
|
||||
|
||||
If you want to support the recognition of the `space` category, please set the `use_space_char` field in the yml file to `True`.
|
||||
|
||||
**Note: use_space_char only takes effect when character_type=ch**
|
||||
|
||||
<a name="TRAINING"></a>
|
||||
## 2.Training
|
||||
|
||||
@ -235,6 +235,8 @@ If the evaluation set is large, the test will be time-consuming. It is recommend
|
||||
| rec_r34_vd_tps_bilstm_att.yml | CRNN | Resnet34_vd | TPS | BiLSTM | att |
|
||||
| rec_r50fpn_vd_none_srn.yml | SRN | Resnet50_fpn_vd | None | rnn | srn |
|
||||
| rec_mtb_nrtr.yml | NRTR | nrtr_mtb | None | transformer encoder | transformer decoder |
|
||||
| rec_r31_sar.yml | SAR | ResNet31 | None | LSTM encoder | LSTM decoder |
|
||||
|
||||
|
||||
For training Chinese data, it is recommended to use
|
||||
[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file:
|
||||
@ -246,7 +248,6 @@ Global:
|
||||
# Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
|
||||
character_dict_path: ppocr/utils/ppocr_keys_v1.txt
|
||||
# Modify character type
|
||||
character_type: ch
|
||||
...
|
||||
# Whether to recognize spaces
|
||||
use_space_char: True
|
||||
@ -308,18 +309,18 @@ Eval:
|
||||
|
||||
Currently, the multi-language algorithms supported by PaddleOCR are:
|
||||
|
||||
| Configuration file | Algorithm name | backbone | trans | seq | pred | language | character_type |
|
||||
| :--------: | :-------: | :-------: | :-------: | :-----: | :-----: | :-----: | :-----: |
|
||||
| rec_chinese_cht_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | chinese traditional | chinese_cht|
|
||||
| rec_en_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | English(Case sensitive) | EN |
|
||||
| rec_french_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | French | french |
|
||||
| rec_ger_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | German | german |
|
||||
| rec_japan_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Japanese | japan |
|
||||
| rec_korean_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Korean | korean |
|
||||
| rec_latin_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Latin | latin |
|
||||
| rec_arabic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | arabic | ar |
|
||||
| rec_cyrillic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | cyrillic | cyrillic |
|
||||
| rec_devanagari_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | devanagari | devanagari |
|
||||
| Configuration file | Algorithm name | backbone | trans | seq | pred | language |
|
||||
| :--------: | :-------: | :-------: | :-------: | :-----: | :-----: | :-----: |
|
||||
| rec_chinese_cht_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | chinese traditional |
|
||||
| rec_en_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | English(Case sensitive) |
|
||||
| rec_french_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | French |
|
||||
| rec_ger_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | German |
|
||||
| rec_japan_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Japanese |
|
||||
| rec_korean_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Korean |
|
||||
| rec_latin_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Latin |
|
||||
| rec_arabic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | arabic |
|
||||
| rec_cyrillic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | cyrillic |
|
||||
| rec_devanagari_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | devanagari |
|
||||
|
||||
For more supported languages, please refer to : [Multi-language model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/multi_languages_en.md#4-support-languages-and-abbreviations)
|
||||
|
||||
@ -467,6 +468,3 @@ inference/det_db/
|
||||
```
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path"
|
||||
```
|
||||
|
||||
|
||||
|
||||
|
@ -146,3 +146,10 @@ There are several experiences for reference when constructing the data set:
|
||||
|
||||
A: It is normal for the acc to be 0 at the beginning of the recognition model training, and the indicator will come up after a longer training period.
|
||||
|
||||
***
|
||||
|
||||
Click the following links for detailed training tutorial:
|
||||
|
||||
- [text detection model training](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/doc/doc_ch/detection.md)
|
||||
- [text recognition model training](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/doc/doc_ch/recognition.md)
|
||||
- [text direction classification model training](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/doc/doc_ch/angle_class.md)
|
||||
|
Loading…
x
Reference in New Issue
Block a user