fix gap between table structure train model and inference model (#4565)
* add indent in pipeline_rpc_client.py * fix gap in table structure train model and inference modelpull/4570/head^2
parent
a8960021ed
commit
b6a21419d6
|
@ -1,29 +1,28 @@
|
|||
Global:
|
||||
use_gpu: true
|
||||
epoch_num: 50
|
||||
epoch_num: 400
|
||||
log_smooth_window: 20
|
||||
print_batch_step: 5
|
||||
save_model_dir: ./output/table_mv3/
|
||||
save_epoch_step: 5
|
||||
save_epoch_step: 3
|
||||
# evaluation is run every 400 iterations after the 0th iteration
|
||||
eval_batch_step: [0, 400]
|
||||
cal_metric_during_train: True
|
||||
pretrained_model:
|
||||
pretrained_model:
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
||||
infer_img: doc/imgs_words/ch/word_1.jpg
|
||||
infer_img: doc/table/table.jpg
|
||||
# for data or label process
|
||||
character_dict_path: ppocr/utils/dict/table_structure_dict.txt
|
||||
character_type: en
|
||||
max_text_length: 100
|
||||
max_elem_length: 500
|
||||
max_elem_length: 800
|
||||
max_cell_num: 500
|
||||
infer_mode: False
|
||||
process_total_num: 0
|
||||
process_cut_num: 0
|
||||
|
||||
|
||||
Optimizer:
|
||||
name: Adam
|
||||
beta1: 0.9
|
||||
|
@ -41,13 +40,15 @@ Architecture:
|
|||
Backbone:
|
||||
name: MobileNetV3
|
||||
scale: 1.0
|
||||
model_name: small
|
||||
disable_se: True
|
||||
model_name: large
|
||||
Head:
|
||||
name: TableAttentionHead
|
||||
hidden_size: 256
|
||||
l2_decay: 0.00001
|
||||
loc_type: 2
|
||||
max_text_length: 100
|
||||
max_elem_length: 800
|
||||
max_cell_num: 500
|
||||
|
||||
Loss:
|
||||
name: TableAttentionLoss
|
||||
|
|
|
@ -41,6 +41,6 @@ for img_file in os.listdir(test_img_dir):
|
|||
image_data = file.read()
|
||||
image = cv2_to_base64(image_data)
|
||||
|
||||
for i in range(1):
|
||||
ret = client.predict(feed_dict={"image": image}, fetch=["res"])
|
||||
print(ret)
|
||||
for i in range(1):
|
||||
ret = client.predict(feed_dict={"image": image}, fetch=["res"])
|
||||
print(ret)
|
||||
|
|
|
@ -23,32 +23,40 @@ import numpy as np
|
|||
|
||||
|
||||
class TableAttentionHead(nn.Layer):
|
||||
def __init__(self, in_channels, hidden_size, loc_type, in_max_len=488, **kwargs):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
hidden_size,
|
||||
loc_type,
|
||||
in_max_len=488,
|
||||
max_text_length=100,
|
||||
max_elem_length=800,
|
||||
max_cell_num=500,
|
||||
**kwargs):
|
||||
super(TableAttentionHead, self).__init__()
|
||||
self.input_size = in_channels[-1]
|
||||
self.hidden_size = hidden_size
|
||||
self.elem_num = 30
|
||||
self.max_text_length = 100
|
||||
self.max_elem_length = 500
|
||||
self.max_cell_num = 500
|
||||
self.max_text_length = max_text_length
|
||||
self.max_elem_length = max_elem_length
|
||||
self.max_cell_num = max_cell_num
|
||||
|
||||
self.structure_attention_cell = AttentionGRUCell(
|
||||
self.input_size, hidden_size, self.elem_num, use_gru=False)
|
||||
self.structure_generator = nn.Linear(hidden_size, self.elem_num)
|
||||
self.loc_type = loc_type
|
||||
self.in_max_len = in_max_len
|
||||
|
||||
|
||||
if self.loc_type == 1:
|
||||
self.loc_generator = nn.Linear(hidden_size, 4)
|
||||
else:
|
||||
if self.in_max_len == 640:
|
||||
self.loc_fea_trans = nn.Linear(400, self.max_elem_length+1)
|
||||
self.loc_fea_trans = nn.Linear(400, self.max_elem_length + 1)
|
||||
elif self.in_max_len == 800:
|
||||
self.loc_fea_trans = nn.Linear(625, self.max_elem_length+1)
|
||||
self.loc_fea_trans = nn.Linear(625, self.max_elem_length + 1)
|
||||
else:
|
||||
self.loc_fea_trans = nn.Linear(256, self.max_elem_length+1)
|
||||
self.loc_fea_trans = nn.Linear(256, self.max_elem_length + 1)
|
||||
self.loc_generator = nn.Linear(self.input_size + hidden_size, 4)
|
||||
|
||||
|
||||
def _char_to_onehot(self, input_char, onehot_dim):
|
||||
input_ont_hot = F.one_hot(input_char, onehot_dim)
|
||||
return input_ont_hot
|
||||
|
@ -60,16 +68,16 @@ class TableAttentionHead(nn.Layer):
|
|||
if len(fea.shape) == 3:
|
||||
pass
|
||||
else:
|
||||
last_shape = int(np.prod(fea.shape[2:])) # gry added
|
||||
last_shape = int(np.prod(fea.shape[2:])) # gry added
|
||||
fea = paddle.reshape(fea, [fea.shape[0], fea.shape[1], last_shape])
|
||||
fea = fea.transpose([0, 2, 1]) # (NTC)(batch, width, channels)
|
||||
batch_size = fea.shape[0]
|
||||
|
||||
|
||||
hidden = paddle.zeros((batch_size, self.hidden_size))
|
||||
output_hiddens = []
|
||||
if self.training and targets is not None:
|
||||
structure = targets[0]
|
||||
for i in range(self.max_elem_length+1):
|
||||
for i in range(self.max_elem_length + 1):
|
||||
elem_onehots = self._char_to_onehot(
|
||||
structure[:, i], onehot_dim=self.elem_num)
|
||||
(outputs, hidden), alpha = self.structure_attention_cell(
|
||||
|
@ -96,7 +104,7 @@ class TableAttentionHead(nn.Layer):
|
|||
alpha = None
|
||||
max_elem_length = paddle.to_tensor(self.max_elem_length)
|
||||
i = 0
|
||||
while i < max_elem_length+1:
|
||||
while i < max_elem_length + 1:
|
||||
elem_onehots = self._char_to_onehot(
|
||||
temp_elem, onehot_dim=self.elem_num)
|
||||
(outputs, hidden), alpha = self.structure_attention_cell(
|
||||
|
@ -105,7 +113,7 @@ class TableAttentionHead(nn.Layer):
|
|||
structure_probs_step = self.structure_generator(outputs)
|
||||
temp_elem = structure_probs_step.argmax(axis=1, dtype="int32")
|
||||
i += 1
|
||||
|
||||
|
||||
output = paddle.concat(output_hiddens, axis=1)
|
||||
structure_probs = self.structure_generator(output)
|
||||
structure_probs = F.softmax(structure_probs)
|
||||
|
@ -119,9 +127,9 @@ class TableAttentionHead(nn.Layer):
|
|||
loc_concat = paddle.concat([output, loc_fea], axis=2)
|
||||
loc_preds = self.loc_generator(loc_concat)
|
||||
loc_preds = F.sigmoid(loc_preds)
|
||||
return {'structure_probs':structure_probs, 'loc_preds':loc_preds}
|
||||
return {'structure_probs': structure_probs, 'loc_preds': loc_preds}
|
||||
|
||||
|
||||
|
||||
class AttentionGRUCell(nn.Layer):
|
||||
def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False):
|
||||
super(AttentionGRUCell, self).__init__()
|
||||
|
|
Loading…
Reference in New Issue