commit
bccba5578f
|
@ -0,0 +1,51 @@
|
||||||
|
===========================train_params===========================
|
||||||
|
model_name:ch_ppocr_mobile_v2.0_rec
|
||||||
|
python:python3.7
|
||||||
|
gpu_list:0|0,1
|
||||||
|
Global.use_gpu:True|True
|
||||||
|
Global.auto_cast:null
|
||||||
|
Global.epoch_num:lite_train_infer=2|whole_train_infer=300
|
||||||
|
Global.save_model_dir:./output/
|
||||||
|
Train.loader.batch_size_per_card:lite_train_infer=128|whole_train_infer=128
|
||||||
|
Global.pretrained_model:null
|
||||||
|
train_model_name:latest
|
||||||
|
train_infer_img_dir:./inference/rec_inference
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
trainer:norm_train
|
||||||
|
norm_train:tools/train.py -c configs/rec/rec_icdar15_train.yml -o
|
||||||
|
pact_train:null
|
||||||
|
fpgm_train:null
|
||||||
|
distill_train:null
|
||||||
|
null:null
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
===========================eval_params===========================
|
||||||
|
eval:tools/eval.py -c configs/rec/rec_icdar15_train.yml -o
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
===========================infer_params===========================
|
||||||
|
Global.save_inference_dir:./output/
|
||||||
|
Global.pretrained_model:
|
||||||
|
norm_export:tools/export_model.py -c configs/rec/rec_icdar15_train.yml -o
|
||||||
|
quant_export:null
|
||||||
|
fpgm_export:null
|
||||||
|
distill_export:null
|
||||||
|
export1:null
|
||||||
|
export2:null
|
||||||
|
##
|
||||||
|
infer_model:null
|
||||||
|
infer_export:tools/export_model.py -c configs/rec/rec_icdar15_train.yml -o
|
||||||
|
infer_quant:False
|
||||||
|
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100" --rec_algorithm="RARE"
|
||||||
|
--use_gpu:True|False
|
||||||
|
--enable_mkldnn:True|False
|
||||||
|
--cpu_threads:1|6
|
||||||
|
--rec_batch_num:1|6
|
||||||
|
--use_tensorrt:True|False
|
||||||
|
--precision:fp32|fp16|int8
|
||||||
|
--rec_model_dir:
|
||||||
|
--image_dir:./inference/rec_inference
|
||||||
|
--save_log_path:./test/output/
|
||||||
|
--benchmark:True
|
||||||
|
null:null
|
|
@ -0,0 +1,51 @@
|
||||||
|
===========================train_params===========================
|
||||||
|
model_name:ch_ppocr_server_v2.0_rec
|
||||||
|
python:python3.7
|
||||||
|
gpu_list:0|0,1
|
||||||
|
Global.use_gpu:True|True
|
||||||
|
Global.auto_cast:null
|
||||||
|
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
|
||||||
|
Global.save_model_dir:./output/
|
||||||
|
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
|
||||||
|
Global.pretrained_model:null
|
||||||
|
train_model_name:latest
|
||||||
|
train_infer_img_dir:./inference/rec_inference
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
trainer:norm_train
|
||||||
|
norm_train:tools/train.py -c test_tipc/configs/ch_ppocr_server_v2.0_rec/rec_icdar15_train.yml -o
|
||||||
|
pact_train:null
|
||||||
|
fpgm_train:null
|
||||||
|
distill_train:null
|
||||||
|
null:null
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
===========================eval_params===========================
|
||||||
|
eval:tools/eval.py -c test_tipc/configs/ch_ppocr_server_v2.0_rec/rec_icdar15_train.yml -o
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
===========================infer_params===========================
|
||||||
|
Global.save_inference_dir:./output/
|
||||||
|
Global.pretrained_model:
|
||||||
|
norm_export:tools/export_model.py -c test_tipc/configs/ch_ppocr_server_v2.0_rec/rec_icdar15_train.yml -o
|
||||||
|
quant_export:null
|
||||||
|
fpgm_export:null
|
||||||
|
distill_export:null
|
||||||
|
export1:null
|
||||||
|
export2:null
|
||||||
|
##
|
||||||
|
infer_model:null
|
||||||
|
infer_export:tools/export_model.py -c test_tipc/configs/ch_ppocr_server_v2.0_rec/rec_icdar15_train.yml -o
|
||||||
|
infer_quant:False
|
||||||
|
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
|
||||||
|
--use_gpu:True|False
|
||||||
|
--enable_mkldnn:True|False
|
||||||
|
--cpu_threads:1|6
|
||||||
|
--rec_batch_num:1|6
|
||||||
|
--use_tensorrt:True|False
|
||||||
|
--precision:fp32|fp16|int8
|
||||||
|
--rec_model_dir:
|
||||||
|
--image_dir:./inference/rec_inference
|
||||||
|
--save_log_path:./test/output/
|
||||||
|
--benchmark:True
|
||||||
|
null:null
|
|
@ -0,0 +1,97 @@
|
||||||
|
Global:
|
||||||
|
use_gpu: True
|
||||||
|
epoch_num: 72
|
||||||
|
log_smooth_window: 20
|
||||||
|
print_batch_step: 10
|
||||||
|
save_model_dir: ./output/rec/mv3_none_bilstm_ctc/
|
||||||
|
save_epoch_step: 3
|
||||||
|
# evaluation is run every 2000 iterations
|
||||||
|
eval_batch_step: [0, 2000]
|
||||||
|
cal_metric_during_train: True
|
||||||
|
pretrained_model:
|
||||||
|
checkpoints:
|
||||||
|
save_inference_dir:
|
||||||
|
use_visualdl: False
|
||||||
|
infer_img: doc/imgs_words_en/word_10.png
|
||||||
|
# for data or label process
|
||||||
|
character_dict_path:
|
||||||
|
max_text_length: 25
|
||||||
|
infer_mode: False
|
||||||
|
use_space_char: False
|
||||||
|
save_res_path: ./output/rec/predicts_mv3_none_bilstm_ctc.txt
|
||||||
|
|
||||||
|
Optimizer:
|
||||||
|
name: Adam
|
||||||
|
beta1: 0.9
|
||||||
|
beta2: 0.999
|
||||||
|
lr:
|
||||||
|
learning_rate: 0.0005
|
||||||
|
regularizer:
|
||||||
|
name: 'L2'
|
||||||
|
factor: 0
|
||||||
|
|
||||||
|
Architecture:
|
||||||
|
model_type: rec
|
||||||
|
algorithm: CRNN
|
||||||
|
Transform:
|
||||||
|
Backbone:
|
||||||
|
name: MobileNetV3
|
||||||
|
scale: 0.5
|
||||||
|
model_name: large
|
||||||
|
Neck:
|
||||||
|
name: SequenceEncoder
|
||||||
|
encoder_type: rnn
|
||||||
|
hidden_size: 96
|
||||||
|
Head:
|
||||||
|
name: CTCHead
|
||||||
|
fc_decay: 0
|
||||||
|
|
||||||
|
Loss:
|
||||||
|
name: CTCLoss
|
||||||
|
|
||||||
|
PostProcess:
|
||||||
|
name: CTCLabelDecode
|
||||||
|
|
||||||
|
Metric:
|
||||||
|
name: RecMetric
|
||||||
|
main_indicator: acc
|
||||||
|
|
||||||
|
Train:
|
||||||
|
dataset:
|
||||||
|
name: SimpleDataSet
|
||||||
|
data_dir: ./train_data/ic15_data/
|
||||||
|
label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"]
|
||||||
|
transforms:
|
||||||
|
- DecodeImage: # load image
|
||||||
|
img_mode: BGR
|
||||||
|
channel_first: False
|
||||||
|
- CTCLabelEncode: # Class handling label
|
||||||
|
- RecResizeImg:
|
||||||
|
image_shape: [3, 32, 100]
|
||||||
|
- KeepKeys:
|
||||||
|
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||||
|
loader:
|
||||||
|
shuffle: False
|
||||||
|
batch_size_per_card: 256
|
||||||
|
drop_last: True
|
||||||
|
num_workers: 8
|
||||||
|
|
||||||
|
Eval:
|
||||||
|
dataset:
|
||||||
|
name: SimpleDataSet
|
||||||
|
data_dir: ./train_data/ic15_data
|
||||||
|
label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"]
|
||||||
|
transforms:
|
||||||
|
- DecodeImage: # load image
|
||||||
|
img_mode: BGR
|
||||||
|
channel_first: False
|
||||||
|
- CTCLabelEncode: # Class handling label
|
||||||
|
- RecResizeImg:
|
||||||
|
image_shape: [3, 32, 100]
|
||||||
|
- KeepKeys:
|
||||||
|
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||||
|
loader:
|
||||||
|
shuffle: False
|
||||||
|
drop_last: False
|
||||||
|
batch_size_per_card: 256
|
||||||
|
num_workers: 4
|
|
@ -0,0 +1,51 @@
|
||||||
|
===========================train_params===========================
|
||||||
|
model_name:rec_mv3_none_bilstm_ctc_v2.0
|
||||||
|
python:python3.7
|
||||||
|
gpu_list:0|0,1
|
||||||
|
Global.use_gpu:True|True
|
||||||
|
Global.auto_cast:null
|
||||||
|
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
|
||||||
|
Global.save_model_dir:./output/
|
||||||
|
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
|
||||||
|
Global.pretrained_model:null
|
||||||
|
train_model_name:latest
|
||||||
|
train_infer_img_dir:./inference/rec_inference
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
trainer:norm_train
|
||||||
|
norm_train:tools/train.py -c test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||||
|
pact_train:null
|
||||||
|
fpgm_train:null
|
||||||
|
distill_train:null
|
||||||
|
null:null
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
===========================eval_params===========================
|
||||||
|
eval:tools/eval.py -c test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
===========================infer_params===========================
|
||||||
|
Global.save_inference_dir:./output/
|
||||||
|
Global.pretrained_model:
|
||||||
|
norm_export:tools/export_model.py -c test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||||
|
quant_export:null
|
||||||
|
fpgm_export:null
|
||||||
|
distill_export:null
|
||||||
|
export1:null
|
||||||
|
export2:null
|
||||||
|
##
|
||||||
|
infer_model:null
|
||||||
|
infer_export:tools/export_model.py -c test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||||
|
infer_quant:False
|
||||||
|
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
|
||||||
|
--use_gpu:True|False
|
||||||
|
--enable_mkldnn:True|False
|
||||||
|
--cpu_threads:1|6
|
||||||
|
--rec_batch_num:1|6
|
||||||
|
--use_tensorrt:True|False
|
||||||
|
--precision:fp32|fp16|int8
|
||||||
|
--rec_model_dir:
|
||||||
|
--image_dir:./inference/rec_inference
|
||||||
|
--save_log_path:./test/output/
|
||||||
|
--benchmark:True
|
||||||
|
null:null
|
|
@ -0,0 +1,96 @@
|
||||||
|
Global:
|
||||||
|
use_gpu: True
|
||||||
|
epoch_num: 72
|
||||||
|
log_smooth_window: 20
|
||||||
|
print_batch_step: 10
|
||||||
|
save_model_dir: ./output/rec/mv3_none_none_ctc/
|
||||||
|
save_epoch_step: 3
|
||||||
|
# evaluation is run every 2000 iterations
|
||||||
|
eval_batch_step: [0, 2000]
|
||||||
|
cal_metric_during_train: True
|
||||||
|
pretrained_model:
|
||||||
|
checkpoints:
|
||||||
|
save_inference_dir:
|
||||||
|
use_visualdl: False
|
||||||
|
infer_img: doc/imgs_words_en/word_10.png
|
||||||
|
# for data or label process
|
||||||
|
character_dict_path:
|
||||||
|
max_text_length: 25
|
||||||
|
infer_mode: False
|
||||||
|
use_space_char: False
|
||||||
|
save_res_path: ./output/rec/predicts_mv3_none_none_ctc.txt
|
||||||
|
|
||||||
|
Optimizer:
|
||||||
|
name: Adam
|
||||||
|
beta1: 0.9
|
||||||
|
beta2: 0.999
|
||||||
|
lr:
|
||||||
|
learning_rate: 0.0005
|
||||||
|
regularizer:
|
||||||
|
name: 'L2'
|
||||||
|
factor: 0
|
||||||
|
|
||||||
|
Architecture:
|
||||||
|
model_type: rec
|
||||||
|
algorithm: Rosetta
|
||||||
|
Transform:
|
||||||
|
Backbone:
|
||||||
|
name: MobileNetV3
|
||||||
|
scale: 0.5
|
||||||
|
model_name: large
|
||||||
|
Neck:
|
||||||
|
name: SequenceEncoder
|
||||||
|
encoder_type: reshape
|
||||||
|
Head:
|
||||||
|
name: CTCHead
|
||||||
|
fc_decay: 0.0004
|
||||||
|
|
||||||
|
Loss:
|
||||||
|
name: CTCLoss
|
||||||
|
|
||||||
|
PostProcess:
|
||||||
|
name: CTCLabelDecode
|
||||||
|
|
||||||
|
Metric:
|
||||||
|
name: RecMetric
|
||||||
|
main_indicator: acc
|
||||||
|
|
||||||
|
Train:
|
||||||
|
dataset:
|
||||||
|
name: SimpleDataSet
|
||||||
|
data_dir: ./train_data/ic15_data/
|
||||||
|
label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"]
|
||||||
|
transforms:
|
||||||
|
- DecodeImage: # load image
|
||||||
|
img_mode: BGR
|
||||||
|
channel_first: False
|
||||||
|
- CTCLabelEncode: # Class handling label
|
||||||
|
- RecResizeImg:
|
||||||
|
image_shape: [3, 32, 100]
|
||||||
|
- KeepKeys:
|
||||||
|
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||||
|
loader:
|
||||||
|
shuffle: False
|
||||||
|
batch_size_per_card: 256
|
||||||
|
drop_last: True
|
||||||
|
num_workers: 8
|
||||||
|
|
||||||
|
Eval:
|
||||||
|
dataset:
|
||||||
|
name: SimpleDataSet
|
||||||
|
data_dir: ./train_data/ic15_data
|
||||||
|
label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"]
|
||||||
|
transforms:
|
||||||
|
- DecodeImage: # load image
|
||||||
|
img_mode: BGR
|
||||||
|
channel_first: False
|
||||||
|
- CTCLabelEncode: # Class handling label
|
||||||
|
- RecResizeImg:
|
||||||
|
image_shape: [3, 32, 100]
|
||||||
|
- KeepKeys:
|
||||||
|
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||||
|
loader:
|
||||||
|
shuffle: False
|
||||||
|
drop_last: False
|
||||||
|
batch_size_per_card: 256
|
||||||
|
num_workers: 8
|
|
@ -0,0 +1,51 @@
|
||||||
|
===========================train_params===========================
|
||||||
|
model_name:rec_mv3_none_none_ctc_v2.0
|
||||||
|
python:python3.7
|
||||||
|
gpu_list:0|0,1
|
||||||
|
Global.use_gpu:True|True
|
||||||
|
Global.auto_cast:null
|
||||||
|
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
|
||||||
|
Global.save_model_dir:./output/
|
||||||
|
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
|
||||||
|
Global.pretrained_model:null
|
||||||
|
train_model_name:latest
|
||||||
|
train_infer_img_dir:./inference/rec_inference
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
trainer:norm_train
|
||||||
|
norm_train:tools/train.py -c test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml -o
|
||||||
|
pact_train:null
|
||||||
|
fpgm_train:null
|
||||||
|
distill_train:null
|
||||||
|
null:null
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
===========================eval_params===========================
|
||||||
|
eval:tools/eval.py -c test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml -o
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
===========================infer_params===========================
|
||||||
|
Global.save_inference_dir:./output/
|
||||||
|
Global.pretrained_model:
|
||||||
|
norm_export:tools/export_model.py -c test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml -o
|
||||||
|
quant_export:null
|
||||||
|
fpgm_export:null
|
||||||
|
distill_export:null
|
||||||
|
export1:null
|
||||||
|
export2:null
|
||||||
|
##
|
||||||
|
infer_model:null
|
||||||
|
infer_export:tools/export_model.py -c test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml -o
|
||||||
|
infer_quant:False
|
||||||
|
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
|
||||||
|
--use_gpu:True|False
|
||||||
|
--enable_mkldnn:True|False
|
||||||
|
--cpu_threads:1|6
|
||||||
|
--rec_batch_num:1|6
|
||||||
|
--use_tensorrt:True|False
|
||||||
|
--precision:fp32|fp16|int8
|
||||||
|
--rec_model_dir:
|
||||||
|
--image_dir:./inference/rec_inference
|
||||||
|
--save_log_path:./test/output/
|
||||||
|
--benchmark:True
|
||||||
|
null:null
|
|
@ -0,0 +1,101 @@
|
||||||
|
Global:
|
||||||
|
use_gpu: True
|
||||||
|
epoch_num: 72
|
||||||
|
log_smooth_window: 20
|
||||||
|
print_batch_step: 10
|
||||||
|
save_model_dir: ./output/rec/mv3_tps_bilstm_ctc/
|
||||||
|
save_epoch_step: 3
|
||||||
|
# evaluation is run every 2000 iterations
|
||||||
|
eval_batch_step: [0, 2000]
|
||||||
|
cal_metric_during_train: True
|
||||||
|
pretrained_model:
|
||||||
|
checkpoints:
|
||||||
|
save_inference_dir:
|
||||||
|
use_visualdl: False
|
||||||
|
infer_img: doc/imgs_words_en/word_10.png
|
||||||
|
# for data or label process
|
||||||
|
character_dict_path:
|
||||||
|
max_text_length: 25
|
||||||
|
infer_mode: False
|
||||||
|
use_space_char: False
|
||||||
|
save_res_path: ./output/rec/predicts_mv3_tps_bilstm_ctc.txt
|
||||||
|
|
||||||
|
Optimizer:
|
||||||
|
name: Adam
|
||||||
|
beta1: 0.9
|
||||||
|
beta2: 0.999
|
||||||
|
lr:
|
||||||
|
learning_rate: 0.0005
|
||||||
|
regularizer:
|
||||||
|
name: 'L2'
|
||||||
|
factor: 0
|
||||||
|
|
||||||
|
Architecture:
|
||||||
|
model_type: rec
|
||||||
|
algorithm: STARNet
|
||||||
|
Transform:
|
||||||
|
name: TPS
|
||||||
|
num_fiducial: 20
|
||||||
|
loc_lr: 0.1
|
||||||
|
model_name: small
|
||||||
|
Backbone:
|
||||||
|
name: MobileNetV3
|
||||||
|
scale: 0.5
|
||||||
|
model_name: large
|
||||||
|
Neck:
|
||||||
|
name: SequenceEncoder
|
||||||
|
encoder_type: rnn
|
||||||
|
hidden_size: 96
|
||||||
|
Head:
|
||||||
|
name: CTCHead
|
||||||
|
fc_decay: 0.0004
|
||||||
|
|
||||||
|
Loss:
|
||||||
|
name: CTCLoss
|
||||||
|
|
||||||
|
PostProcess:
|
||||||
|
name: CTCLabelDecode
|
||||||
|
|
||||||
|
Metric:
|
||||||
|
name: RecMetric
|
||||||
|
main_indicator: acc
|
||||||
|
|
||||||
|
Train:
|
||||||
|
dataset:
|
||||||
|
name: SimpleDataSet
|
||||||
|
data_dir: ./train_data/ic15_data/
|
||||||
|
label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"]
|
||||||
|
transforms:
|
||||||
|
- DecodeImage: # load image
|
||||||
|
img_mode: BGR
|
||||||
|
channel_first: False
|
||||||
|
- CTCLabelEncode: # Class handling label
|
||||||
|
- RecResizeImg:
|
||||||
|
image_shape: [3, 32, 100]
|
||||||
|
- KeepKeys:
|
||||||
|
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||||
|
loader:
|
||||||
|
shuffle: False
|
||||||
|
batch_size_per_card: 256
|
||||||
|
drop_last: True
|
||||||
|
num_workers: 8
|
||||||
|
|
||||||
|
Eval:
|
||||||
|
dataset:
|
||||||
|
name: SimpleDataSet
|
||||||
|
data_dir: ./train_data/ic15_data
|
||||||
|
label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"]
|
||||||
|
transforms:
|
||||||
|
- DecodeImage: # load image
|
||||||
|
img_mode: BGR
|
||||||
|
channel_first: False
|
||||||
|
- CTCLabelEncode: # Class handling label
|
||||||
|
- RecResizeImg:
|
||||||
|
image_shape: [3, 32, 100]
|
||||||
|
- KeepKeys:
|
||||||
|
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||||
|
loader:
|
||||||
|
shuffle: False
|
||||||
|
drop_last: False
|
||||||
|
batch_size_per_card: 256
|
||||||
|
num_workers: 4
|
|
@ -0,0 +1,51 @@
|
||||||
|
===========================train_params===========================
|
||||||
|
model_name:rec_mv3_tps_bilstm_ctc_v2.0
|
||||||
|
python:python3.7
|
||||||
|
gpu_list:0|0,1
|
||||||
|
Global.use_gpu:True|True
|
||||||
|
Global.auto_cast:null
|
||||||
|
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
|
||||||
|
Global.save_model_dir:./output/
|
||||||
|
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
|
||||||
|
Global.pretrained_model:null
|
||||||
|
train_model_name:latest
|
||||||
|
train_infer_img_dir:./inference/rec_inference
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
trainer:norm_train
|
||||||
|
norm_train:tools/train.py -c test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||||
|
pact_train:null
|
||||||
|
fpgm_train:null
|
||||||
|
distill_train:null
|
||||||
|
null:null
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
===========================eval_params===========================
|
||||||
|
eval:tools/eval.py -c test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
===========================infer_params===========================
|
||||||
|
Global.save_inference_dir:./output/
|
||||||
|
Global.pretrained_model:
|
||||||
|
norm_export:tools/export_model.py -c test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||||
|
quant_export:null
|
||||||
|
fpgm_export:null
|
||||||
|
distill_export:null
|
||||||
|
export1:null
|
||||||
|
export2:null
|
||||||
|
##
|
||||||
|
infer_model:null
|
||||||
|
infer_export:tools/export_model.py -c test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||||
|
infer_quant:False
|
||||||
|
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
|
||||||
|
--use_gpu:True|False
|
||||||
|
--enable_mkldnn:True|False
|
||||||
|
--cpu_threads:1|6
|
||||||
|
--rec_batch_num:1|6
|
||||||
|
--use_tensorrt:True|False
|
||||||
|
--precision:fp32|fp16|int8
|
||||||
|
--rec_model_dir:
|
||||||
|
--image_dir:./inference/rec_inference
|
||||||
|
--save_log_path:./test/output/
|
||||||
|
--benchmark:True
|
||||||
|
null:null
|
|
@ -0,0 +1,96 @@
|
||||||
|
Global:
|
||||||
|
use_gpu: true
|
||||||
|
epoch_num: 72
|
||||||
|
log_smooth_window: 20
|
||||||
|
print_batch_step: 10
|
||||||
|
save_model_dir: ./output/rec/r34_vd_none_bilstm_ctc/
|
||||||
|
save_epoch_step: 3
|
||||||
|
# evaluation is run every 2000 iterations
|
||||||
|
eval_batch_step: [0, 2000]
|
||||||
|
cal_metric_during_train: True
|
||||||
|
pretrained_model:
|
||||||
|
checkpoints:
|
||||||
|
save_inference_dir:
|
||||||
|
use_visualdl: False
|
||||||
|
infer_img: doc/imgs_words_en/word_10.png
|
||||||
|
# for data or label process
|
||||||
|
character_dict_path:
|
||||||
|
max_text_length: 25
|
||||||
|
infer_mode: False
|
||||||
|
use_space_char: False
|
||||||
|
save_res_path: ./output/rec/predicts_r34_vd_none_bilstm_ctc.txt
|
||||||
|
|
||||||
|
Optimizer:
|
||||||
|
name: Adam
|
||||||
|
beta1: 0.9
|
||||||
|
beta2: 0.999
|
||||||
|
lr:
|
||||||
|
learning_rate: 0.0005
|
||||||
|
regularizer:
|
||||||
|
name: 'L2'
|
||||||
|
factor: 0
|
||||||
|
|
||||||
|
Architecture:
|
||||||
|
model_type: rec
|
||||||
|
algorithm: CRNN
|
||||||
|
Transform:
|
||||||
|
Backbone:
|
||||||
|
name: ResNet
|
||||||
|
layers: 34
|
||||||
|
Neck:
|
||||||
|
name: SequenceEncoder
|
||||||
|
encoder_type: rnn
|
||||||
|
hidden_size: 256
|
||||||
|
Head:
|
||||||
|
name: CTCHead
|
||||||
|
fc_decay: 0
|
||||||
|
|
||||||
|
Loss:
|
||||||
|
name: CTCLoss
|
||||||
|
|
||||||
|
PostProcess:
|
||||||
|
name: CTCLabelDecode
|
||||||
|
|
||||||
|
Metric:
|
||||||
|
name: RecMetric
|
||||||
|
main_indicator: acc
|
||||||
|
|
||||||
|
Train:
|
||||||
|
dataset:
|
||||||
|
name: SimpleDataSet
|
||||||
|
data_dir: ./train_data/ic15_data/
|
||||||
|
label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"]
|
||||||
|
transforms:
|
||||||
|
- DecodeImage: # load image
|
||||||
|
img_mode: BGR
|
||||||
|
channel_first: False
|
||||||
|
- CTCLabelEncode: # Class handling label
|
||||||
|
- RecResizeImg:
|
||||||
|
image_shape: [3, 32, 100]
|
||||||
|
- KeepKeys:
|
||||||
|
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||||
|
loader:
|
||||||
|
shuffle: True
|
||||||
|
batch_size_per_card: 256
|
||||||
|
drop_last: True
|
||||||
|
num_workers: 8
|
||||||
|
|
||||||
|
Eval:
|
||||||
|
dataset:
|
||||||
|
name: SimpleDataSet
|
||||||
|
data_dir: ./train_data/ic15_data
|
||||||
|
label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"]
|
||||||
|
transforms:
|
||||||
|
- DecodeImage: # load image
|
||||||
|
img_mode: BGR
|
||||||
|
channel_first: False
|
||||||
|
- CTCLabelEncode: # Class handling label
|
||||||
|
- RecResizeImg:
|
||||||
|
image_shape: [3, 32, 100]
|
||||||
|
- KeepKeys:
|
||||||
|
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||||
|
loader:
|
||||||
|
shuffle: False
|
||||||
|
drop_last: False
|
||||||
|
batch_size_per_card: 256
|
||||||
|
num_workers: 4
|
|
@ -0,0 +1,51 @@
|
||||||
|
===========================train_params===========================
|
||||||
|
model_name:rec_r34_vd_none_bilstm_ctc_v2.0
|
||||||
|
python:python3.7
|
||||||
|
gpu_list:0|0,1
|
||||||
|
Global.use_gpu:True|True
|
||||||
|
Global.auto_cast:null
|
||||||
|
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
|
||||||
|
Global.save_model_dir:./output/
|
||||||
|
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
|
||||||
|
Global.pretrained_model:null
|
||||||
|
train_model_name:latest
|
||||||
|
train_infer_img_dir:./inference/rec_inference
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
trainer:norm_train
|
||||||
|
norm_train:tools/train.py -c test_tipc/configs/rec_r34_vd_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||||
|
pact_train:null
|
||||||
|
fpgm_train:null
|
||||||
|
distill_train:null
|
||||||
|
null:null
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
===========================eval_params===========================
|
||||||
|
eval:tools/eval.py -c test_tipc/configs/rec_r34_vd_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
===========================infer_params===========================
|
||||||
|
Global.save_inference_dir:./output/
|
||||||
|
Global.pretrained_model:
|
||||||
|
norm_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||||
|
quant_export:null
|
||||||
|
fpgm_export:null
|
||||||
|
distill_export:null
|
||||||
|
export1:null
|
||||||
|
export2:null
|
||||||
|
##
|
||||||
|
infer_model:null
|
||||||
|
infer_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||||
|
infer_quant:False
|
||||||
|
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
|
||||||
|
--use_gpu:True|False
|
||||||
|
--enable_mkldnn:True|False
|
||||||
|
--cpu_threads:1|6
|
||||||
|
--rec_batch_num:1|6
|
||||||
|
--use_tensorrt:True|False
|
||||||
|
--precision:fp32|fp16|int8
|
||||||
|
--rec_model_dir:
|
||||||
|
--image_dir:./inference/rec_inference
|
||||||
|
--save_log_path:./test/output/
|
||||||
|
--benchmark:True
|
||||||
|
null:null
|
|
@ -0,0 +1,94 @@
|
||||||
|
Global:
|
||||||
|
use_gpu: true
|
||||||
|
epoch_num: 72
|
||||||
|
log_smooth_window: 20
|
||||||
|
print_batch_step: 10
|
||||||
|
save_model_dir: ./output/rec/r34_vd_none_none_ctc/
|
||||||
|
save_epoch_step: 3
|
||||||
|
# evaluation is run every 2000 iterations
|
||||||
|
eval_batch_step: [0, 2000]
|
||||||
|
cal_metric_during_train: True
|
||||||
|
pretrained_model:
|
||||||
|
checkpoints:
|
||||||
|
save_inference_dir:
|
||||||
|
use_visualdl: False
|
||||||
|
infer_img: doc/imgs_words_en/word_10.png
|
||||||
|
# for data or label process
|
||||||
|
character_dict_path:
|
||||||
|
max_text_length: 25
|
||||||
|
infer_mode: False
|
||||||
|
use_space_char: False
|
||||||
|
save_res_path: ./output/rec/predicts_r34_vd_none_none_ctc.txt
|
||||||
|
|
||||||
|
Optimizer:
|
||||||
|
name: Adam
|
||||||
|
beta1: 0.9
|
||||||
|
beta2: 0.999
|
||||||
|
lr:
|
||||||
|
learning_rate: 0.0005
|
||||||
|
regularizer:
|
||||||
|
name: 'L2'
|
||||||
|
factor: 0
|
||||||
|
|
||||||
|
Architecture:
|
||||||
|
model_type: rec
|
||||||
|
algorithm: Rosetta
|
||||||
|
Backbone:
|
||||||
|
name: ResNet
|
||||||
|
layers: 34
|
||||||
|
Neck:
|
||||||
|
name: SequenceEncoder
|
||||||
|
encoder_type: reshape
|
||||||
|
Head:
|
||||||
|
name: CTCHead
|
||||||
|
fc_decay: 0.0004
|
||||||
|
|
||||||
|
Loss:
|
||||||
|
name: CTCLoss
|
||||||
|
|
||||||
|
PostProcess:
|
||||||
|
name: CTCLabelDecode
|
||||||
|
|
||||||
|
Metric:
|
||||||
|
name: RecMetric
|
||||||
|
main_indicator: acc
|
||||||
|
|
||||||
|
Train:
|
||||||
|
dataset:
|
||||||
|
name: SimpleDataSet
|
||||||
|
data_dir: ./train_data/ic15_data/
|
||||||
|
label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"]
|
||||||
|
transforms:
|
||||||
|
- DecodeImage: # load image
|
||||||
|
img_mode: BGR
|
||||||
|
channel_first: False
|
||||||
|
- CTCLabelEncode: # Class handling label
|
||||||
|
- RecResizeImg:
|
||||||
|
image_shape: [3, 32, 100]
|
||||||
|
- KeepKeys:
|
||||||
|
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||||
|
loader:
|
||||||
|
shuffle: True
|
||||||
|
batch_size_per_card: 256
|
||||||
|
drop_last: True
|
||||||
|
num_workers: 8
|
||||||
|
|
||||||
|
Eval:
|
||||||
|
dataset:
|
||||||
|
name: SimpleDataSet
|
||||||
|
data_dir: ./train_data/ic15_data
|
||||||
|
label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"]
|
||||||
|
transforms:
|
||||||
|
- DecodeImage: # load image
|
||||||
|
img_mode: BGR
|
||||||
|
channel_first: False
|
||||||
|
- CTCLabelEncode: # Class handling label
|
||||||
|
- RecResizeImg:
|
||||||
|
image_shape: [3, 32, 100]
|
||||||
|
- KeepKeys:
|
||||||
|
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||||
|
loader:
|
||||||
|
shuffle: False
|
||||||
|
drop_last: False
|
||||||
|
batch_size_per_card: 256
|
||||||
|
num_workers: 4
|
|
@ -0,0 +1,51 @@
|
||||||
|
===========================train_params===========================
|
||||||
|
model_name:rec_r34_vd_none_none_ctc_v2.0
|
||||||
|
python:python3.7
|
||||||
|
gpu_list:0|0,1
|
||||||
|
Global.use_gpu:True|True
|
||||||
|
Global.auto_cast:null
|
||||||
|
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
|
||||||
|
Global.save_model_dir:./output/
|
||||||
|
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
|
||||||
|
Global.pretrained_model:null
|
||||||
|
train_model_name:latest
|
||||||
|
train_infer_img_dir:./inference/rec_inference
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
trainer:norm_train
|
||||||
|
norm_train:tools/train.py -c test_tipc/configs/rec_r34_vd_none_none_ctc_v2.0/rec_icdar15_train.yml -o
|
||||||
|
pact_train:null
|
||||||
|
fpgm_train:null
|
||||||
|
distill_train:null
|
||||||
|
null:null
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
===========================eval_params===========================
|
||||||
|
eval:tools/eval.py -c test_tipc/configs/rec_r34_vd_none_none_ctc_v2.0/rec_icdar15_train.yml -o
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
===========================infer_params===========================
|
||||||
|
Global.save_inference_dir:./output/
|
||||||
|
Global.pretrained_model:
|
||||||
|
norm_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_none_none_ctc_v2.0/rec_icdar15_train.yml -o
|
||||||
|
quant_export:null
|
||||||
|
fpgm_export:null
|
||||||
|
distill_export:null
|
||||||
|
export1:null
|
||||||
|
export2:null
|
||||||
|
##
|
||||||
|
infer_model:null
|
||||||
|
infer_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_none_none_ctc_v2.0/rec_icdar15_train.yml -o
|
||||||
|
infer_quant:False
|
||||||
|
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
|
||||||
|
--use_gpu:True|False
|
||||||
|
--enable_mkldnn:True|False
|
||||||
|
--cpu_threads:1|6
|
||||||
|
--rec_batch_num:1|6
|
||||||
|
--use_tensorrt:True|False
|
||||||
|
--precision:fp32|fp16|int8
|
||||||
|
--rec_model_dir:
|
||||||
|
--image_dir:./inference/rec_inference
|
||||||
|
--save_log_path:./test/output/
|
||||||
|
--benchmark:True
|
||||||
|
null:null
|
|
@ -0,0 +1,100 @@
|
||||||
|
Global:
|
||||||
|
use_gpu: true
|
||||||
|
epoch_num: 72
|
||||||
|
log_smooth_window: 20
|
||||||
|
print_batch_step: 10
|
||||||
|
save_model_dir: ./output/rec/r34_vd_tps_bilstm_ctc/
|
||||||
|
save_epoch_step: 3
|
||||||
|
# evaluation is run every 2000 iterations
|
||||||
|
eval_batch_step: [0, 2000]
|
||||||
|
cal_metric_during_train: True
|
||||||
|
pretrained_model:
|
||||||
|
checkpoints:
|
||||||
|
save_inference_dir:
|
||||||
|
use_visualdl: False
|
||||||
|
infer_img: doc/imgs_words_en/word_10.png
|
||||||
|
# for data or label process
|
||||||
|
character_dict_path:
|
||||||
|
max_text_length: 25
|
||||||
|
infer_mode: False
|
||||||
|
use_space_char: False
|
||||||
|
save_res_path: ./output/rec/predicts_r34_vd_tps_bilstm_ctc.txt
|
||||||
|
|
||||||
|
Optimizer:
|
||||||
|
name: Adam
|
||||||
|
beta1: 0.9
|
||||||
|
beta2: 0.999
|
||||||
|
lr:
|
||||||
|
learning_rate: 0.0005
|
||||||
|
regularizer:
|
||||||
|
name: 'L2'
|
||||||
|
factor: 0
|
||||||
|
|
||||||
|
Architecture:
|
||||||
|
model_type: rec
|
||||||
|
algorithm: STARNet
|
||||||
|
Transform:
|
||||||
|
name: TPS
|
||||||
|
num_fiducial: 20
|
||||||
|
loc_lr: 0.1
|
||||||
|
model_name: large
|
||||||
|
Backbone:
|
||||||
|
name: ResNet
|
||||||
|
layers: 34
|
||||||
|
Neck:
|
||||||
|
name: SequenceEncoder
|
||||||
|
encoder_type: rnn
|
||||||
|
hidden_size: 256
|
||||||
|
Head:
|
||||||
|
name: CTCHead
|
||||||
|
fc_decay: 0
|
||||||
|
|
||||||
|
Loss:
|
||||||
|
name: CTCLoss
|
||||||
|
|
||||||
|
PostProcess:
|
||||||
|
name: CTCLabelDecode
|
||||||
|
|
||||||
|
Metric:
|
||||||
|
name: RecMetric
|
||||||
|
main_indicator: acc
|
||||||
|
|
||||||
|
Train:
|
||||||
|
dataset:
|
||||||
|
name: SimpleDataSet
|
||||||
|
data_dir: ./train_data/ic15_data/
|
||||||
|
label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"]
|
||||||
|
transforms:
|
||||||
|
- DecodeImage: # load image
|
||||||
|
img_mode: BGR
|
||||||
|
channel_first: False
|
||||||
|
- CTCLabelEncode: # Class handling label
|
||||||
|
- RecResizeImg:
|
||||||
|
image_shape: [3, 32, 100]
|
||||||
|
- KeepKeys:
|
||||||
|
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||||
|
loader:
|
||||||
|
shuffle: True
|
||||||
|
batch_size_per_card: 256
|
||||||
|
drop_last: True
|
||||||
|
num_workers: 8
|
||||||
|
|
||||||
|
Eval:
|
||||||
|
dataset:
|
||||||
|
name: SimpleDataSet
|
||||||
|
data_dir: ./train_data/ic15_data
|
||||||
|
label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"]
|
||||||
|
transforms:
|
||||||
|
- DecodeImage: # load image
|
||||||
|
img_mode: BGR
|
||||||
|
channel_first: False
|
||||||
|
- CTCLabelEncode: # Class handling label
|
||||||
|
- RecResizeImg:
|
||||||
|
image_shape: [3, 32, 100]
|
||||||
|
- KeepKeys:
|
||||||
|
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||||
|
loader:
|
||||||
|
shuffle: False
|
||||||
|
drop_last: False
|
||||||
|
batch_size_per_card: 256
|
||||||
|
num_workers: 4
|
|
@ -0,0 +1,51 @@
|
||||||
|
===========================train_params===========================
|
||||||
|
model_name:rec_r34_vd_tps_bilstm_ctc_v2.0
|
||||||
|
python:python3.7
|
||||||
|
gpu_list:0|0,1
|
||||||
|
Global.use_gpu:True|True
|
||||||
|
Global.auto_cast:null
|
||||||
|
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
|
||||||
|
Global.save_model_dir:./output/
|
||||||
|
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
|
||||||
|
Global.pretrained_model:null
|
||||||
|
train_model_name:latest
|
||||||
|
train_infer_img_dir:./inference/rec_inference
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
trainer:norm_train
|
||||||
|
norm_train:tools/train.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||||
|
pact_train:null
|
||||||
|
fpgm_train:null
|
||||||
|
distill_train:null
|
||||||
|
null:null
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
===========================eval_params===========================
|
||||||
|
eval:tools/eval.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
===========================infer_params===========================
|
||||||
|
Global.save_inference_dir:./output/
|
||||||
|
Global.pretrained_model:
|
||||||
|
norm_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||||
|
quant_export:null
|
||||||
|
fpgm_export:null
|
||||||
|
distill_export:null
|
||||||
|
export1:null
|
||||||
|
export2:null
|
||||||
|
##
|
||||||
|
infer_model:null
|
||||||
|
infer_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||||
|
infer_quant:False
|
||||||
|
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
|
||||||
|
--use_gpu:True|False
|
||||||
|
--enable_mkldnn:True|False
|
||||||
|
--cpu_threads:1|6
|
||||||
|
--rec_batch_num:1|6
|
||||||
|
--use_tensorrt:True|False
|
||||||
|
--precision:fp32|fp16|int8
|
||||||
|
--rec_model_dir:
|
||||||
|
--image_dir:./inference/rec_inference
|
||||||
|
--save_log_path:./test/output/
|
||||||
|
--benchmark:True
|
||||||
|
null:null
|
|
@ -111,14 +111,12 @@ elif [ ${MODE} = "whole_infer" ];then
|
||||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
|
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
|
||||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar --no-check-certificate
|
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar --no-check-certificate
|
||||||
cd ./inference && tar xf ch_ppocr_server_v2.0_det_infer.tar && tar xf ch_ppocr_server_v2.0_rec_infer.tar && tar xf ch_det_data_50.tar && cd ../
|
cd ./inference && tar xf ch_ppocr_server_v2.0_det_infer.tar && tar xf ch_ppocr_server_v2.0_rec_infer.tar && tar xf ch_det_data_50.tar && cd ../
|
||||||
elif [ ${model_name} = "ocr_rec" ]; then
|
elif [ ${model_name} = "ch_ppocr_mobile_v2.0_rec" ]; then
|
||||||
rm -rf ./train_data/ic15_data
|
|
||||||
eval_model_name="ch_ppocr_mobile_v2.0_rec_infer"
|
eval_model_name="ch_ppocr_mobile_v2.0_rec_infer"
|
||||||
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar --no-check-certificate
|
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar --no-check-certificate
|
||||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar --no-check-certificate
|
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar --no-check-certificate
|
||||||
cd ./inference && tar xf ${eval_model_name}.tar && tar xf rec_inference.tar && cd ../
|
cd ./inference && tar xf ${eval_model_name}.tar && tar xf rec_inference.tar && cd ../
|
||||||
elif [ ${model_name} = "ocr_server_rec" ]; then
|
elif [ ${model_name} = "ch_ppocr_server_v2.0_rec" ]; then
|
||||||
rm -rf ./train_data/ic15_data
|
|
||||||
eval_model_name="ch_ppocr_server_v2.0_rec_infer"
|
eval_model_name="ch_ppocr_server_v2.0_rec_infer"
|
||||||
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar --no-check-certificate
|
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar --no-check-certificate
|
||||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar --no-check-certificate
|
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar --no-check-certificate
|
||||||
|
@ -163,7 +161,7 @@ if [ ${MODE} = "cpp_infer" ];then
|
||||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
|
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
|
||||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar --no-check-certificate
|
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar --no-check-certificate
|
||||||
cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_det_data_50.tar && cd ../
|
cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_det_data_50.tar && cd ../
|
||||||
elif [ ${model_name} = "ocr_rec" ]; then
|
elif [ ${model_name} = "ch_ppocr_mobile_v2.0_rec" ]; then
|
||||||
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar --no-check-certificate
|
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar --no-check-certificate
|
||||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar --no-check-certificate
|
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar --no-check-certificate
|
||||||
cd ./inference && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf rec_inference.tar && cd ../
|
cd ./inference && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf rec_inference.tar && cd ../
|
||||||
|
|
|
@ -226,7 +226,7 @@ if [ ${MODE} = "whole_infer" ] || [ ${MODE} = "klquant_whole_infer" ]; then
|
||||||
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
|
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
|
||||||
export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}"
|
export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}"
|
||||||
echo ${infer_run_exports[Count]}
|
echo ${infer_run_exports[Count]}
|
||||||
echo $export_cmd
|
echo $export_cmd
|
||||||
eval $export_cmd
|
eval $export_cmd
|
||||||
status_export=$?
|
status_export=$?
|
||||||
status_check $status_export "${export_cmd}" "${status_log}"
|
status_check $status_export "${export_cmd}" "${status_log}"
|
||||||
|
@ -336,7 +336,7 @@ else
|
||||||
|
|
||||||
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
|
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
|
||||||
# save norm trained models to set pretrain for pact training and fpgm training
|
# save norm trained models to set pretrain for pact training and fpgm training
|
||||||
if [ ${trainer} = ${trainer_norm} ] && [ ${nodes} -le 1]; then
|
if [ ${trainer} = ${trainer_norm} ] && [ ${nodes} -le 1 ]; then
|
||||||
load_norm_train_model=${set_eval_pretrain}
|
load_norm_train_model=${set_eval_pretrain}
|
||||||
fi
|
fi
|
||||||
# run eval
|
# run eval
|
||||||
|
@ -359,7 +359,7 @@ else
|
||||||
#run inference
|
#run inference
|
||||||
eval $env
|
eval $env
|
||||||
save_infer_path="${save_log}"
|
save_infer_path="${save_log}"
|
||||||
if [ ${inference_dir} != "null" ] && [ ${inference_dir} != '##' ]; then
|
if [[ ${inference_dir} != "null" ]] && [[ ${inference_dir} != '##' ]]; then
|
||||||
infer_model_dir="${save_infer_path}/${inference_dir}"
|
infer_model_dir="${save_infer_path}/${inference_dir}"
|
||||||
else
|
else
|
||||||
infer_model_dir=${save_infer_path}
|
infer_model_dir=${save_infer_path}
|
||||||
|
|
|
@ -91,7 +91,7 @@ class TextRecognizer(object):
|
||||||
time_keys=[
|
time_keys=[
|
||||||
'preprocess_time', 'inference_time', 'postprocess_time'
|
'preprocess_time', 'inference_time', 'postprocess_time'
|
||||||
],
|
],
|
||||||
warmup=2,
|
warmup=0,
|
||||||
logger=logger)
|
logger=logger)
|
||||||
|
|
||||||
def resize_norm_img(self, img, max_wh_ratio):
|
def resize_norm_img(self, img, max_wh_ratio):
|
||||||
|
|
Loading…
Reference in New Issue