mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-06-03 21:53:39 +08:00
add amp eval
This commit is contained in:
parent
0a247f02d4
commit
c3924a959b
@ -23,6 +23,7 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.insert(0, __dir__)
|
||||
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
|
||||
|
||||
import paddle
|
||||
from ppocr.data import build_dataloader
|
||||
from ppocr.modeling.architectures import build_model
|
||||
from ppocr.postprocess import build_post_process
|
||||
@ -86,6 +87,30 @@ def main():
|
||||
else:
|
||||
model_type = None
|
||||
|
||||
# build metric
|
||||
eval_class = build_metric(config['Metric'])
|
||||
# amp
|
||||
use_amp = config["Global"].get("use_amp", False)
|
||||
amp_level = config["Global"].get("amp_level", 'O2')
|
||||
amp_custom_black_list = config['Global'].get('amp_custom_black_list',[])
|
||||
if use_amp:
|
||||
AMP_RELATED_FLAGS_SETTING = {
|
||||
'FLAGS_cudnn_batchnorm_spatial_persistent': 1,
|
||||
'FLAGS_max_inplace_grad_add': 8,
|
||||
}
|
||||
paddle.fluid.set_flags(AMP_RELATED_FLAGS_SETTING)
|
||||
scale_loss = config["Global"].get("scale_loss", 1.0)
|
||||
use_dynamic_loss_scaling = config["Global"].get(
|
||||
"use_dynamic_loss_scaling", False)
|
||||
scaler = paddle.amp.GradScaler(
|
||||
init_loss_scaling=scale_loss,
|
||||
use_dynamic_loss_scaling=use_dynamic_loss_scaling)
|
||||
if amp_level == "O2":
|
||||
model = paddle.amp.decorate(
|
||||
models=model, level=amp_level, master_weight=True)
|
||||
else:
|
||||
scaler = None
|
||||
|
||||
best_model_dict = load_model(
|
||||
config, model, model_type=config['Architecture']["model_type"])
|
||||
if len(best_model_dict):
|
||||
@ -93,11 +118,9 @@ def main():
|
||||
for k, v in best_model_dict.items():
|
||||
logger.info('{}:{}'.format(k, v))
|
||||
|
||||
# build metric
|
||||
eval_class = build_metric(config['Metric'])
|
||||
# start eval
|
||||
metric = program.eval(model, valid_dataloader, post_process_class,
|
||||
eval_class, model_type, extra_input)
|
||||
eval_class, model_type, extra_input, scaler, amp_level, amp_custom_black_list)
|
||||
logger.info('metric eval ***************')
|
||||
for k, v in metric.items():
|
||||
logger.info('{}:{}'.format(k, v))
|
||||
|
@ -191,7 +191,8 @@ def train(config,
|
||||
logger,
|
||||
log_writer=None,
|
||||
scaler=None,
|
||||
amp_level='O2'):
|
||||
amp_level='O2',
|
||||
amp_custom_black_list=[]):
|
||||
cal_metric_during_train = config['Global'].get('cal_metric_during_train',
|
||||
False)
|
||||
calc_epoch_interval = config['Global'].get('calc_epoch_interval', 1)
|
||||
@ -277,8 +278,7 @@ def train(config,
|
||||
model_average = True
|
||||
# use amp
|
||||
if scaler:
|
||||
custom_black_list = config['Global'].get('amp_custom_black_list',[])
|
||||
with paddle.amp.auto_cast(level=amp_level, custom_black_list=custom_black_list):
|
||||
with paddle.amp.auto_cast(level=amp_level, custom_black_list=amp_custom_black_list):
|
||||
if model_type == 'table' or extra_input:
|
||||
preds = model(images, data=batch[1:])
|
||||
elif model_type in ["kie", 'vqa']:
|
||||
@ -383,7 +383,9 @@ def train(config,
|
||||
eval_class,
|
||||
model_type,
|
||||
extra_input=extra_input,
|
||||
scaler=scaler)
|
||||
scaler=scaler,
|
||||
amp_level=amp_level,
|
||||
amp_custom_black_list=amp_custom_black_list)
|
||||
cur_metric_str = 'cur metric, {}'.format(', '.join(
|
||||
['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
|
||||
logger.info(cur_metric_str)
|
||||
@ -474,7 +476,9 @@ def eval(model,
|
||||
eval_class,
|
||||
model_type=None,
|
||||
extra_input=False,
|
||||
scaler=None):
|
||||
scaler=None,
|
||||
amp_level='O2',
|
||||
amp_custom_black_list = []):
|
||||
model.eval()
|
||||
with paddle.no_grad():
|
||||
total_frame = 0.0
|
||||
@ -495,7 +499,7 @@ def eval(model,
|
||||
|
||||
# use amp
|
||||
if scaler:
|
||||
with paddle.amp.auto_cast(level='O2'):
|
||||
with paddle.amp.auto_cast(level=amp_level, custom_black_list=amp_custom_black_list):
|
||||
if model_type == 'table' or extra_input:
|
||||
preds = model(images, data=batch[1:])
|
||||
elif model_type in ["kie", 'vqa']:
|
||||
|
@ -138,9 +138,7 @@ def main(config, device, logger, vdl_writer):
|
||||
|
||||
# build metric
|
||||
eval_class = build_metric(config['Metric'])
|
||||
# load pretrain model
|
||||
pre_best_model_dict = load_model(config, model, optimizer,
|
||||
config['Architecture']["model_type"])
|
||||
|
||||
logger.info('train dataloader has {} iters'.format(len(train_dataloader)))
|
||||
if valid_dataloader is not None:
|
||||
logger.info('valid dataloader has {} iters'.format(
|
||||
@ -148,6 +146,7 @@ def main(config, device, logger, vdl_writer):
|
||||
|
||||
use_amp = config["Global"].get("use_amp", False)
|
||||
amp_level = config["Global"].get("amp_level", 'O2')
|
||||
amp_custom_black_list = config['Global'].get('amp_custom_black_list',[])
|
||||
if use_amp:
|
||||
AMP_RELATED_FLAGS_SETTING = {
|
||||
'FLAGS_cudnn_batchnorm_spatial_persistent': 1,
|
||||
@ -166,12 +165,16 @@ def main(config, device, logger, vdl_writer):
|
||||
else:
|
||||
scaler = None
|
||||
|
||||
# load pretrain model
|
||||
pre_best_model_dict = load_model(config, model, optimizer,
|
||||
config['Architecture']["model_type"])
|
||||
|
||||
if config['Global']['distributed']:
|
||||
model = paddle.DataParallel(model)
|
||||
# start train
|
||||
program.train(config, train_dataloader, valid_dataloader, device, model,
|
||||
loss_class, optimizer, lr_scheduler, post_process_class,
|
||||
eval_class, pre_best_model_dict, logger, vdl_writer, scaler,amp_level)
|
||||
eval_class, pre_best_model_dict, logger, vdl_writer, scaler,amp_level, amp_custom_black_list)
|
||||
|
||||
|
||||
def test_reader(config, device, logger):
|
||||
|
Loading…
x
Reference in New Issue
Block a user