mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-06-03 21:53:39 +08:00
Merge pull request #2690 from littletomatodonkey/dyg/cp_user_pr
cherry-pick users' pr
This commit is contained in:
commit
c4d20782cf
@ -186,18 +186,23 @@ float PostProcessor::PolygonScoreAcc(std::vector<cv::Point> contour,
|
|||||||
cv::Mat mask;
|
cv::Mat mask;
|
||||||
mask = cv::Mat::zeros(ymax - ymin + 1, xmax - xmin + 1, CV_8UC1);
|
mask = cv::Mat::zeros(ymax - ymin + 1, xmax - xmin + 1, CV_8UC1);
|
||||||
|
|
||||||
cv::Point rook_point[contour.size()];
|
|
||||||
|
cv::Point* rook_point = new cv::Point[contour.size()];
|
||||||
|
|
||||||
for (int i = 0; i < contour.size(); ++i) {
|
for (int i = 0; i < contour.size(); ++i) {
|
||||||
rook_point[i] = cv::Point(int(box_x[i]) - xmin, int(box_y[i]) - ymin);
|
rook_point[i] = cv::Point(int(box_x[i]) - xmin, int(box_y[i]) - ymin);
|
||||||
}
|
}
|
||||||
const cv::Point *ppt[1] = {rook_point};
|
const cv::Point *ppt[1] = {rook_point};
|
||||||
int npt[] = {int(contour.size())};
|
int npt[] = {int(contour.size())};
|
||||||
|
|
||||||
|
|
||||||
cv::fillPoly(mask, ppt, npt, 1, cv::Scalar(1));
|
cv::fillPoly(mask, ppt, npt, 1, cv::Scalar(1));
|
||||||
|
|
||||||
cv::Mat croppedImg;
|
cv::Mat croppedImg;
|
||||||
pred(cv::Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1))
|
pred(cv::Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1)).copyTo(croppedImg);
|
||||||
.copyTo(croppedImg);
|
|
||||||
float score = cv::mean(croppedImg, mask)[0];
|
float score = cv::mean(croppedImg, mask)[0];
|
||||||
|
|
||||||
|
delete []rook_point;
|
||||||
return score;
|
return score;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -199,8 +199,12 @@ def train(config,
|
|||||||
train_reader_cost = 0.0
|
train_reader_cost = 0.0
|
||||||
batch_sum = 0
|
batch_sum = 0
|
||||||
batch_start = time.time()
|
batch_start = time.time()
|
||||||
for idx, batch in enumerate(train_dataloader()):
|
max_iter = len(train_dataloader) - 1 if platform.system(
|
||||||
|
) == "Windows" else len(train_dataloader)
|
||||||
|
for idx, batch in enumerate(train_dataloader):
|
||||||
train_reader_cost += time.time() - batch_start
|
train_reader_cost += time.time() - batch_start
|
||||||
|
if idx >= max_iter:
|
||||||
|
break
|
||||||
lr = optimizer.get_lr()
|
lr = optimizer.get_lr()
|
||||||
images = batch[0]
|
images = batch[0]
|
||||||
if use_srn:
|
if use_srn:
|
||||||
|
Loading…
x
Reference in New Issue
Block a user