remove unused code
parent
d5ea6f21f8
commit
c86c174062
|
@ -1,6 +1,6 @@
|
|||
Global:
|
||||
use_gpu: true
|
||||
epoch_num: 400
|
||||
epoch_num: 100
|
||||
log_smooth_window: 20
|
||||
print_batch_step: 20
|
||||
save_model_dir: ./output/SLANet
|
||||
|
@ -28,7 +28,10 @@ Optimizer:
|
|||
beta2: 0.999
|
||||
clip_norm: 5.0
|
||||
lr:
|
||||
name: Piecewise
|
||||
learning_rate: 0.001
|
||||
decay_epochs : [40, 50]
|
||||
values : [0.001, 0.0001, 0.00005]
|
||||
regularizer:
|
||||
name: 'L2'
|
||||
factor: 0.00000
|
||||
|
@ -105,8 +108,8 @@ Train:
|
|||
Eval:
|
||||
dataset:
|
||||
name: PubTabDataSet
|
||||
data_dir: /home/zhoujun20/table/PubTabNe/pubtabnet/val/
|
||||
label_file_list: [/home/zhoujun20/table/PubTabNe/pubtabnet/val_500.jsonl]
|
||||
data_dir: train_data/table/pubtabnet/val/
|
||||
label_file_list: [train_data/table/pubtabnet/PubTabNet_2.0.0_val.jsonl]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
|
|
|
@ -40,169 +40,6 @@ def compute_iou(rec1, rec2):
|
|||
return (intersect / (sum_area - intersect)) * 1.0
|
||||
|
||||
|
||||
def matcher_merge(ocr_bboxes, pred_bboxes):
|
||||
all_dis = []
|
||||
ious = []
|
||||
matched = {}
|
||||
for i, gt_box in enumerate(ocr_bboxes):
|
||||
distances = []
|
||||
for j, pred_box in enumerate(pred_bboxes):
|
||||
# compute l1 distence and IOU between two boxes
|
||||
distances.append((distance(gt_box, pred_box),
|
||||
1. - compute_iou(gt_box, pred_box)))
|
||||
sorted_distances = distances.copy()
|
||||
# select nearest cell
|
||||
sorted_distances = sorted(
|
||||
sorted_distances, key=lambda item: (item[1], item[0]))
|
||||
if distances.index(sorted_distances[0]) not in matched.keys():
|
||||
matched[distances.index(sorted_distances[0])] = [i]
|
||||
else:
|
||||
matched[distances.index(sorted_distances[0])].append(i)
|
||||
return matched #, sum(ious) / len(ious)
|
||||
|
||||
|
||||
def complex_num(pred_bboxes):
|
||||
complex_nums = []
|
||||
for bbox in pred_bboxes:
|
||||
distances = []
|
||||
temp_ious = []
|
||||
for pred_bbox in pred_bboxes:
|
||||
if bbox != pred_bbox:
|
||||
distances.append(distance(bbox, pred_bbox))
|
||||
temp_ious.append(compute_iou(bbox, pred_bbox))
|
||||
complex_nums.append(temp_ious[distances.index(min(distances))])
|
||||
return sum(complex_nums) / len(complex_nums)
|
||||
|
||||
|
||||
def get_rows(pred_bboxes):
|
||||
pre_bbox = pred_bboxes[0]
|
||||
res = []
|
||||
step = 0
|
||||
for i in range(len(pred_bboxes)):
|
||||
bbox = pred_bboxes[i]
|
||||
if bbox[1] - pre_bbox[1] > 2 or bbox[0] - pre_bbox[0] < 0:
|
||||
break
|
||||
else:
|
||||
res.append(bbox)
|
||||
step += 1
|
||||
for i in range(step):
|
||||
pred_bboxes.pop(0)
|
||||
return res, pred_bboxes
|
||||
|
||||
|
||||
def refine_rows(pred_bboxes): # 微调整行的框,使在一条水平线上
|
||||
ys_1 = []
|
||||
ys_2 = []
|
||||
for box in pred_bboxes:
|
||||
ys_1.append(box[1])
|
||||
ys_2.append(box[3])
|
||||
min_y_1 = sum(ys_1) / len(ys_1)
|
||||
min_y_2 = sum(ys_2) / len(ys_2)
|
||||
re_boxes = []
|
||||
for box in pred_bboxes:
|
||||
box[1] = min_y_1
|
||||
box[3] = min_y_2
|
||||
re_boxes.append(box)
|
||||
return re_boxes
|
||||
|
||||
|
||||
def matcher_refine_row(gt_bboxes, pred_bboxes):
|
||||
before_refine_pred_bboxes = pred_bboxes.copy()
|
||||
pred_bboxes = []
|
||||
while (len(before_refine_pred_bboxes) != 0):
|
||||
row_bboxes, before_refine_pred_bboxes = get_rows(
|
||||
before_refine_pred_bboxes)
|
||||
print(row_bboxes)
|
||||
pred_bboxes.extend(refine_rows(row_bboxes))
|
||||
all_dis = []
|
||||
ious = []
|
||||
matched = {}
|
||||
for i, gt_box in enumerate(gt_bboxes):
|
||||
distances = []
|
||||
#temp_ious = []
|
||||
for j, pred_box in enumerate(pred_bboxes):
|
||||
distances.append(distance(gt_box, pred_box))
|
||||
#temp_ious.append(compute_iou(gt_box, pred_box))
|
||||
#all_dis.append(min(distances))
|
||||
#ious.append(temp_ious[distances.index(min(distances))])
|
||||
if distances.index(min(distances)) not in matched.keys():
|
||||
matched[distances.index(min(distances))] = [i]
|
||||
else:
|
||||
matched[distances.index(min(distances))].append(i)
|
||||
return matched #, sum(ious) / len(ious)
|
||||
|
||||
|
||||
#先挑选出一行,再进行匹配
|
||||
def matcher_structure_1(gt_bboxes, pred_bboxes_rows, pred_bboxes):
|
||||
gt_box_index = 0
|
||||
delete_gt_bboxes = gt_bboxes.copy()
|
||||
match_bboxes_ready = []
|
||||
matched = {}
|
||||
while (len(delete_gt_bboxes) != 0):
|
||||
row_bboxes, delete_gt_bboxes = get_rows(delete_gt_bboxes)
|
||||
row_bboxes = sorted(row_bboxes, key=lambda key: key[0])
|
||||
if len(pred_bboxes_rows) > 0:
|
||||
match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
|
||||
print(row_bboxes)
|
||||
for i, gt_box in enumerate(row_bboxes):
|
||||
#print(gt_box)
|
||||
pred_distances = []
|
||||
distances = []
|
||||
for pred_bbox in pred_bboxes:
|
||||
pred_distances.append(distance(gt_box, pred_bbox))
|
||||
for j, pred_box in enumerate(match_bboxes_ready):
|
||||
distances.append(distance(gt_box, pred_box))
|
||||
index = pred_distances.index(min(distances))
|
||||
#print('index', index)
|
||||
if index not in matched.keys():
|
||||
matched[index] = [gt_box_index]
|
||||
else:
|
||||
matched[index].append(gt_box_index)
|
||||
gt_box_index += 1
|
||||
return matched
|
||||
|
||||
|
||||
def matcher_structure(gt_bboxes, pred_bboxes_rows, pred_bboxes):
|
||||
'''
|
||||
gt_bboxes: 排序后
|
||||
pred_bboxes:
|
||||
'''
|
||||
pre_bbox = gt_bboxes[0]
|
||||
matched = {}
|
||||
match_bboxes_ready = []
|
||||
match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
|
||||
for i, gt_box in enumerate(gt_bboxes):
|
||||
|
||||
pred_distances = []
|
||||
for pred_bbox in pred_bboxes:
|
||||
pred_distances.append(distance(gt_box, pred_bbox))
|
||||
distances = []
|
||||
gap_pre = gt_box[1] - pre_bbox[1]
|
||||
gap_pre_1 = gt_box[0] - pre_bbox[2]
|
||||
#print(gap_pre, len(pred_bboxes_rows))
|
||||
if (gap_pre_1 < 0 and len(pred_bboxes_rows) > 0):
|
||||
match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
|
||||
if len(pred_bboxes_rows) == 1:
|
||||
match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
|
||||
if len(match_bboxes_ready) == 0 and len(pred_bboxes_rows) > 0:
|
||||
match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
|
||||
if len(match_bboxes_ready) == 0 and len(pred_bboxes_rows) == 0:
|
||||
break
|
||||
#print(match_bboxes_ready)
|
||||
for j, pred_box in enumerate(match_bboxes_ready):
|
||||
distances.append(distance(gt_box, pred_box))
|
||||
index = pred_distances.index(min(distances))
|
||||
#print(gt_box, index)
|
||||
#match_bboxes_ready.pop(distances.index(min(distances)))
|
||||
print(gt_box, match_bboxes_ready[distances.index(min(distances))])
|
||||
if index not in matched.keys():
|
||||
matched[index] = [i]
|
||||
else:
|
||||
matched[index].append(i)
|
||||
pre_bbox = gt_box
|
||||
return matched
|
||||
|
||||
|
||||
class TableMatch:
|
||||
def __init__(self, filter_ocr_result=False, use_master=False):
|
||||
self.filter_ocr_result = filter_ocr_result
|
||||
|
@ -225,14 +62,13 @@ class TableMatch:
|
|||
def match_result(self, dt_boxes, pred_bboxes):
|
||||
matched = {}
|
||||
for i, gt_box in enumerate(dt_boxes):
|
||||
# gt_box = [np.min(gt_box[:, 0]), np.min(gt_box[:, 1]), np.max(gt_box[:, 0]), np.max(gt_box[:, 1])]
|
||||
distances = []
|
||||
for j, pred_box in enumerate(pred_bboxes):
|
||||
distances.append((distance(gt_box, pred_box),
|
||||
1. - compute_iou(gt_box, pred_box)
|
||||
)) # 获取两两cell之间的L1距离和 1- IOU
|
||||
)) # compute iou and l1 distance
|
||||
sorted_distances = distances.copy()
|
||||
# 根据距离和IOU挑选最"近"的cell
|
||||
# select det box by iou and l1 distance
|
||||
sorted_distances = sorted(
|
||||
sorted_distances, key=lambda item: (item[1], item[0]))
|
||||
if distances.index(sorted_distances[0]) not in matched.keys():
|
||||
|
|
Loading…
Reference in New Issue