add pse curved text detection doc
parent
16bacf0300
commit
d8b33ba187
|
@ -52,17 +52,27 @@
|
|||
python3 tools/export_model.py -c configs/det/det_r50_vd_pse.yml -o Global.pretrained_model=./det_r50_vd_pse_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_pse
|
||||
```
|
||||
|
||||
PSE文本检测模型推理,可以执行如下命令:
|
||||
PSE文本检测模型推理,执行非弯曲文本检测,可以执行如下命令:
|
||||
|
||||
```shell
|
||||
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_pse/" --det_algorithm="PSE"
|
||||
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_pse/" --det_algorithm="PSE" --det_pse_box_type=quad
|
||||
```
|
||||
|
||||
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
|
||||
|
||||

|
||||
|
||||
**注意**:由于ICDAR2015数据集只有1000张训练图像,且主要针对英文场景,所以上述模型对中文文本图像检测效果会比较差。
|
||||
如果想执行弯曲文本检测,可以执行如下命令:
|
||||
|
||||
```shell
|
||||
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_pse/" --det_algorithm="PSE" --det_pse_box_type=poly
|
||||
```
|
||||
|
||||
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
|
||||
|
||||

|
||||
|
||||
**注意**:由于ICDAR2015数据集只有1000张训练图像,且主要针对英文场景,所以上述模型对中文或弯曲文本图像检测效果会比较差。
|
||||
|
||||
<a name="4-2"></a>
|
||||
### 4.2 C++推理
|
||||
|
|
|
@ -52,17 +52,27 @@ First, convert the model saved in the PSE text detection training process into a
|
|||
python3 tools/export_model.py -c configs/det/det_r50_vd_pse.yml -o Global.pretrained_model=./det_r50_vd_pse_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_pse
|
||||
```
|
||||
|
||||
PSE text detection model inference, you can execute the following command:
|
||||
PSE text detection model inference, to perform non-curved text detection, you can run the following commands:
|
||||
|
||||
```shell
|
||||
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_pse/" --det_algorithm="PSE"
|
||||
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_pse/" --det_algorithm="PSE" --det_pse_box_type=quad
|
||||
```
|
||||
|
||||
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:
|
||||
|
||||

|
||||
|
||||
**Note**: Since the ICDAR2015 dataset has only 1,000 training images, mainly for English scenes, the above model has very poor detection result on Chinese text images.
|
||||
If you want to perform curved text detection, you can execute the following command:
|
||||
|
||||
```shell
|
||||
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_pse/" --det_algorithm="PSE" --det_pse_box_type=poly
|
||||
```
|
||||
|
||||
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:
|
||||
|
||||

|
||||
|
||||
**Note**: Since the ICDAR2015 dataset has only 1,000 training images, mainly for English scenes, the above model has very poor detection result on Chinese or curved text images.
|
||||
|
||||
|
||||
<a name="4-2"></a>
|
||||
|
|
Binary file not shown.
After Width: | Height: | Size: 332 KiB |
|
@ -158,7 +158,7 @@ class TextDetector(object):
|
|||
rect[1] = pts[np.argmin(diff)]
|
||||
rect[3] = pts[np.argmax(diff)]
|
||||
return rect
|
||||
|
||||
|
||||
def clip_det_res(self, points, img_height, img_width):
|
||||
for pno in range(points.shape[0]):
|
||||
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
|
||||
|
@ -284,7 +284,7 @@ if __name__ == "__main__":
|
|||
total_time += elapse
|
||||
count += 1
|
||||
save_pred = os.path.basename(image_file) + "\t" + str(
|
||||
json.dumps(np.array(dt_boxes).astype(np.int32).tolist())) + "\n"
|
||||
json.dumps([x.tolist() for x in dt_boxes])) + "\n"
|
||||
save_results.append(save_pred)
|
||||
logger.info(save_pred)
|
||||
logger.info("The predict time of {}: {}".format(image_file, elapse))
|
||||
|
|
Loading…
Reference in New Issue