add benchmark_train.sh v2
parent
6cb47e76f6
commit
e039650ef7
|
@ -1,6 +1,14 @@
|
|||
#!/bin/bash
|
||||
source test_tipc/common_func.sh
|
||||
|
||||
# set env
|
||||
python=python3.7
|
||||
export model_branch=`git symbolic-ref HEAD 2>/dev/null | cut -d"/" -f 3`
|
||||
export model_commit=$(git log|head -n1|awk '{print $2}')
|
||||
export str_tmp=$(echo `pip list|grep paddlepaddle-gpu|awk -F ' ' '{print $2}'`)
|
||||
export frame_version=${str_tmp%%.post*}
|
||||
export frame_commit=$(echo `${python} -c "import paddle;print(paddle.version.commit)"`)
|
||||
|
||||
# run benchmark sh
|
||||
# Usage:
|
||||
# bash run_benchmark_train.sh config.txt params
|
||||
|
@ -55,30 +63,15 @@ function get_repo_name(){
|
|||
}
|
||||
|
||||
FILENAME=$1
|
||||
cp FILENAME as new FILENAME
|
||||
new_filename="./test_tipc/benchmark_train.txt"
|
||||
cmd=`yes|cp $FILENAME $new_filename`
|
||||
FILENAME=$new_filename
|
||||
# MODE be one of ['benchmark_train']
|
||||
MODE=$2
|
||||
params=$3
|
||||
PARAMS=$3
|
||||
# bash test_tipc/benchmark_train.sh test_tipc/configs/det_mv3_db_v2.0/train_benchmark.txt benchmark_train dynamic_bs8_null_SingleP_DP_N1C1
|
||||
IFS="\n"
|
||||
|
||||
# parser params from input: modeltype_bs${bs_item}_${fp_item}_${run_process_type}_${run_mode}_${device_num}
|
||||
IFS="_"
|
||||
params_list=(${params})
|
||||
model_type=${params_list[0]}
|
||||
batch_size=${params_list[1]}
|
||||
batch_size=`echo ${batch_size} | tr -cd "[0-9]" `
|
||||
precision=${params_list[2]}
|
||||
run_process_type=${params_list[3]}
|
||||
run_mode=${params_list[4]}
|
||||
device_num=${params_list[5]}
|
||||
device_num_copy=$device_num
|
||||
IFS=";"
|
||||
|
||||
|
||||
# sed batchsize and precision
|
||||
func_sed_params "$FILENAME" "6" "$precision"
|
||||
func_sed_params "$FILENAME" "9" "$batch_size"
|
||||
|
||||
IFS=$'\n'
|
||||
# parser params from train_benchmark.txt
|
||||
dataline=`cat $FILENAME`
|
||||
# parser params
|
||||
|
@ -87,24 +80,22 @@ lines=(${dataline})
|
|||
model_name=$(func_parser_value "${lines[1]}")
|
||||
|
||||
# 获取benchmark_params所在的行数
|
||||
line_num=`grep -n "benchmark_params" $FILENAME | cut -d ":" -f 1`
|
||||
line_num=`grep -n "train_benchmark_params" $FILENAME | cut -d ":" -f 1`
|
||||
# for train log parser
|
||||
batch_size=$(func_parser_value "${lines[line_num]}")
|
||||
line_num=`expr $line_num + 1`
|
||||
fp_items=$(func_parser_value "${lines[line_num]}")
|
||||
line_num=`expr $line_num + 1`
|
||||
epoch=$(func_parser_value "${lines[line_num]}")
|
||||
|
||||
line_num=`expr $line_num + 1`
|
||||
profile_option_key=$(func_parser_key "${lines[line_num]}")
|
||||
profile_option_params=$(func_parser_value "${lines[line_num]}")
|
||||
profile_option="${profile_option_key}:${profile_option_params}"
|
||||
|
||||
line_num=`expr $line_num + 1`
|
||||
flags_value=$(func_parser_value "${lines[line_num]}")
|
||||
|
||||
gpu_id=$(set_gpu_id $device_num)
|
||||
repo_name=$(get_repo_name )
|
||||
|
||||
SAVE_LOG=${BENCHMARK_LOG_DIR:-$(pwd)} # */benchmark_log
|
||||
status_log="${SAVE_LOG}/benchmark_log/results.log"
|
||||
|
||||
# set export
|
||||
# set flags
|
||||
IFS=";"
|
||||
flags_list=(${flags_value})
|
||||
for _flag in ${flags_list[*]}; do
|
||||
|
@ -112,112 +103,151 @@ for _flag in ${flags_list[*]}; do
|
|||
eval $cmd
|
||||
done
|
||||
|
||||
if [ ${precision} = "null" ];then
|
||||
precision="fp32"
|
||||
fi
|
||||
|
||||
# set env
|
||||
python=python
|
||||
export model_branch=`git symbolic-ref HEAD 2>/dev/null | cut -d"/" -f 3`
|
||||
export model_commit=$(git log|head -n1|awk '{print $2}')
|
||||
export str_tmp=$(echo `pip list|grep paddlepaddle-gpu|awk -F ' ' '{print $2}'`)
|
||||
export frame_version=${str_tmp%%.post*}
|
||||
export frame_commit=$(echo `${python} -c "import paddle;print(paddle.version.commit)"`)
|
||||
# set log_name
|
||||
repo_name=$(get_repo_name )
|
||||
SAVE_LOG=${BENCHMARK_LOG_DIR:-$(pwd)} # */benchmark_log
|
||||
mkdir -p "${SAVE_LOG}/benchmark_log/"
|
||||
status_log="${SAVE_LOG}/benchmark_log/results.log"
|
||||
|
||||
# set eval and export as null
|
||||
# line eval_py: 24
|
||||
# line export_py: 30
|
||||
func_sed_params "$FILENAME" "24" "null"
|
||||
func_sed_params "$FILENAME" "30" "null"
|
||||
func_sed_params "$FILENAME" "3" "python"
|
||||
|
||||
|
||||
if [ ${#gpu_id} -le 1 ];then
|
||||
log_path="$SAVE_LOG/profiling_log"
|
||||
mkdir -p $log_path
|
||||
log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_process_type}_${run_mode}_${device_num}_profiling"
|
||||
func_sed_params "$FILENAME" "4" "0" # sed used gpu_id
|
||||
# set profile_option params
|
||||
IFS=";"
|
||||
cmd="sed -i '13s/.*/${profile_option}/' '${FILENAME}'"
|
||||
eval $cmd
|
||||
|
||||
# run test_train_inference_python.sh
|
||||
cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 "
|
||||
echo $cmd
|
||||
eval $cmd
|
||||
eval "cat ${log_path}/${log_name}"
|
||||
|
||||
# without profile
|
||||
log_path="$SAVE_LOG/train_log"
|
||||
speed_log_path="$SAVE_LOG/index"
|
||||
mkdir -p $log_path
|
||||
mkdir -p $speed_log_path
|
||||
log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_process_type}_${run_mode}_${device_num}_log"
|
||||
speed_log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_process_type}_${run_mode}_${device_num}_speed"
|
||||
func_sed_params "$FILENAME" "13" "null" # sed profile_id as null
|
||||
cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 "
|
||||
echo $cmd
|
||||
job_bt=`date '+%Y%m%d%H%M%S'`
|
||||
eval $cmd
|
||||
job_et=`date '+%Y%m%d%H%M%S'`
|
||||
export model_run_time=$((${job_et}-${job_bt}))
|
||||
eval "cat ${log_path}/${log_name}"
|
||||
|
||||
# parser log
|
||||
_model_name="${model_name}_bs${batch_size}_${precision}_${run_process_type}_${run_mode}"
|
||||
cmd="${python} ${BENCHMARK_ROOT}/scripts/analysis.py --filename ${log_path}/${log_name} \
|
||||
--speed_log_file '${speed_log_path}/${speed_log_name}' \
|
||||
--model_name ${_model_name} \
|
||||
--base_batch_size ${batch_size} \
|
||||
--run_mode ${run_mode} \
|
||||
--run_process_type ${run_process_type} \
|
||||
--fp_item ${precision} \
|
||||
--keyword samples/s: \
|
||||
--skip_steps 2 \
|
||||
--device_num ${device_num} \
|
||||
--speed_unit images/s \
|
||||
--convergence_key loss: "
|
||||
echo $cmd
|
||||
eval $cmd
|
||||
last_status=${PIPESTATUS[0]}
|
||||
status_check $last_status "${cmd}" "${status_log}"
|
||||
func_sed_params "$FILENAME" "3" "$python"
|
||||
|
||||
# if params
|
||||
if [ ! -n "$PARAMS" ] ;then
|
||||
# PARAMS input is not a word.
|
||||
IFS="|"
|
||||
batch_size_list=(${batch_size})
|
||||
fp_items_list=(${fp_items})
|
||||
device_num_list=(N1C4)
|
||||
run_mode="DP"
|
||||
echo "batchsize list: $batch_size_list ${batch_size_list[1]}"
|
||||
echo "fp_item_lists: $fp_items_list ${fp_items_list[1]}"
|
||||
else
|
||||
unset_env=`unset CUDA_VISIBLE_DEVICES`
|
||||
log_path="$SAVE_LOG/train_log"
|
||||
speed_log_path="$SAVE_LOG/index"
|
||||
mkdir -p $log_path
|
||||
mkdir -p $speed_log_path
|
||||
log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_process_type}_${run_mode}_${device_num}_log"
|
||||
speed_log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_process_type}_${run_mode}_${device_num}_speed"
|
||||
func_sed_params "$FILENAME" "4" "$gpu_id" # sed used gpu_id
|
||||
func_sed_params "$FILENAME" "13" "null" # sed --profile_option as null
|
||||
cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 "
|
||||
echo $cmd
|
||||
job_bt=`date '+%Y%m%d%H%M%S'`
|
||||
eval $cmd
|
||||
job_et=`date '+%Y%m%d%H%M%S'`
|
||||
export model_run_time=$((${job_et}-${job_bt}))
|
||||
eval "cat ${log_path}/${log_name}"
|
||||
# parser log
|
||||
_model_name="${model_name}_bs${batch_size}_${precision}_${run_process_type}_${run_mode}"
|
||||
# parser params from input: modeltype_bs${bs_item}_${fp_item}_${run_process_type}_${run_mode}_${device_num}
|
||||
IFS="_"
|
||||
params_list=(${PARAMS})
|
||||
model_type=${params_list[0]}
|
||||
batch_size=${params_list[1]}
|
||||
batch_size=`echo ${batch_size} | tr -cd "[0-9]" `
|
||||
precision=${params_list[2]}
|
||||
run_process_type=${params_list[3]}
|
||||
run_mode=${params_list[4]}
|
||||
device_num=${params_list[5]}
|
||||
IFS=";"
|
||||
|
||||
cmd="${python} ${BENCHMARK_ROOT}/scripts/analysis.py --filename ${log_path}/${log_name} \
|
||||
--speed_log_file '${speed_log_path}/${speed_log_name}' \
|
||||
--model_name ${_model_name} \
|
||||
--base_batch_size ${batch_size} \
|
||||
--run_mode ${run_mode} \
|
||||
--run_process_type ${run_process_type} \
|
||||
--fp_item ${precision} \
|
||||
--keyword samples/s: \
|
||||
--skip_steps 2 \
|
||||
--device_num ${device_num} \
|
||||
--speed_unit images/s \
|
||||
--convergence_key loss: "
|
||||
echo $cmd
|
||||
eval $cmd
|
||||
last_status=${PIPESTATUS[0]}
|
||||
status_check $last_status "${cmd}" "${status_log}"
|
||||
if [ ${precision} = "null" ];then
|
||||
precision="fp32"
|
||||
fi
|
||||
|
||||
fp_items_list=($precision)
|
||||
batch_size_list=($batch_size)
|
||||
device_num_list=($device_num)
|
||||
fi
|
||||
|
||||
IFS="|"
|
||||
for batch_size in ${batch_size_list[*]}; do
|
||||
for precision in ${fp_items_list[*]}; do
|
||||
for device_num in ${device_num_list[*]}; do
|
||||
echo "for $batch_size $precision $device_num $epoch"
|
||||
# sed batchsize and precision
|
||||
func_sed_params "$FILENAME" "6" "$precision"
|
||||
func_sed_params "$FILENAME" "9" "$MODE=$batch_size"
|
||||
func_sed_params "$FILENAME" "7" "$MODE=$epoch"
|
||||
gpu_id=$(set_gpu_id $device_num)
|
||||
|
||||
if [ ${#gpu_id} -le 1 ];then
|
||||
run_process_type="SingleP"
|
||||
log_path="$SAVE_LOG/profiling_log"
|
||||
mkdir -p $log_path
|
||||
log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_process_type}_${run_mode}_${device_num}_profiling"
|
||||
func_sed_params "$FILENAME" "4" "0" # sed used gpu_id
|
||||
# set profile_option params
|
||||
echo "profile_option: ${profile_option}"
|
||||
tmp=`sed -i "13s/.*/${profile_option}/" "${FILENAME}"`
|
||||
|
||||
# run test_train_inference_python.sh
|
||||
cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 "
|
||||
echo $cmd
|
||||
eval $cmd
|
||||
eval "cat ${log_path}/${log_name}"
|
||||
|
||||
# without profile
|
||||
log_path="$SAVE_LOG/train_log"
|
||||
speed_log_path="$SAVE_LOG/index"
|
||||
mkdir -p $log_path
|
||||
mkdir -p $speed_log_path
|
||||
log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_process_type}_${run_mode}_${device_num}_log"
|
||||
speed_log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_process_type}_${run_mode}_${device_num}_speed"
|
||||
func_sed_params "$FILENAME" "13" "null" # sed profile_id as null
|
||||
cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 "
|
||||
echo $cmd
|
||||
job_bt=`date '+%Y%m%d%H%M%S'`
|
||||
eval $cmd
|
||||
job_et=`date '+%Y%m%d%H%M%S'`
|
||||
export model_run_time=$((${job_et}-${job_bt}))
|
||||
eval "cat ${log_path}/${log_name}"
|
||||
|
||||
# parser log
|
||||
_model_name="${model_name}_bs${batch_size}_${precision}_${run_process_type}_${run_mode}"
|
||||
cmd="${python} ${BENCHMARK_ROOT}/scripts/analysis.py --filename ${log_path}/${log_name} \
|
||||
--speed_log_file '${speed_log_path}/${speed_log_name}' \
|
||||
--model_name ${_model_name} \
|
||||
--base_batch_size ${batch_size} \
|
||||
--run_mode ${run_mode} \
|
||||
--run_process_type ${run_process_type} \
|
||||
--fp_item ${precision} \
|
||||
--keyword ips: \
|
||||
--skip_steps 2 \
|
||||
--device_num ${device_num} \
|
||||
--speed_unit samples/s \
|
||||
--convergence_key loss: "
|
||||
echo $cmd
|
||||
eval $cmd
|
||||
last_status=${PIPESTATUS[0]}
|
||||
status_check $last_status "${cmd}" "${status_log}"
|
||||
else
|
||||
IFS=";"
|
||||
unset_env=`unset CUDA_VISIBLE_DEVICES`
|
||||
run_process_type="MultiP"
|
||||
log_path="$SAVE_LOG/train_log"
|
||||
speed_log_path="$SAVE_LOG/index"
|
||||
mkdir -p $log_path
|
||||
mkdir -p $speed_log_path
|
||||
log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_process_type}_${run_mode}_${device_num}_log"
|
||||
speed_log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_process_type}_${run_mode}_${device_num}_speed"
|
||||
func_sed_params "$FILENAME" "4" "$gpu_id" # sed used gpu_id
|
||||
func_sed_params "$FILENAME" "13" "null" # sed --profile_option as null
|
||||
cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 "
|
||||
echo $cmd
|
||||
job_bt=`date '+%Y%m%d%H%M%S'`
|
||||
eval $cmd
|
||||
job_et=`date '+%Y%m%d%H%M%S'`
|
||||
export model_run_time=$((${job_et}-${job_bt}))
|
||||
eval "cat ${log_path}/${log_name}"
|
||||
# parser log
|
||||
_model_name="${model_name}_bs${batch_size}_${precision}_${run_process_type}_${run_mode}"
|
||||
|
||||
cmd="${python} ${BENCHMARK_ROOT}/scripts/analysis.py --filename ${log_path}/${log_name} \
|
||||
--speed_log_file '${speed_log_path}/${speed_log_name}' \
|
||||
--model_name ${_model_name} \
|
||||
--base_batch_size ${batch_size} \
|
||||
--run_mode ${run_mode} \
|
||||
--run_process_type ${run_process_type} \
|
||||
--fp_item ${precision} \
|
||||
--keyword ips: \
|
||||
--skip_steps 2 \
|
||||
--device_num ${device_num} \
|
||||
--speed_unit images/s \
|
||||
--convergence_key loss: "
|
||||
echo $cmd
|
||||
eval $cmd
|
||||
last_status=${PIPESTATUS[0]}
|
||||
status_check $last_status "${cmd}" "${status_log}"
|
||||
fi
|
||||
done
|
||||
done
|
||||
done
|
|
@ -4,9 +4,9 @@ python:python3.7
|
|||
gpu_list:0|0,1
|
||||
Global.use_gpu:True|True
|
||||
Global.auto_cast:null
|
||||
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300|benchmark_train=2
|
||||
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4|benchmark_train=16
|
||||
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
|
||||
Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
|
||||
|
@ -49,6 +49,9 @@ inference:tools/infer/predict_det.py
|
|||
null:null
|
||||
--benchmark:True
|
||||
null:null
|
||||
===========================benchmark_params==========================
|
||||
===========================train_benchmark_params==========================
|
||||
batch_size:8|16
|
||||
fp_items:fp32|fp16
|
||||
epoch:2
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
|
@ -283,7 +283,7 @@ def train(config,
|
|||
eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
|
||||
strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \
|
||||
'{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \
|
||||
'samples/s: {:.5f}, eta: {}'.format(
|
||||
'ips: {:.5f} , eta: {}'.format(
|
||||
epoch, epoch_num, global_step, logs,
|
||||
train_reader_cost / print_batch_step,
|
||||
train_batch_cost / print_batch_step,
|
||||
|
|
Loading…
Reference in New Issue