add vqa_ser to ppstructure predict pipeline

pull/4899/head
WenmuZhou 2021-12-13 07:38:05 +00:00
parent 585dbc3016
commit e16ae81e15
8 changed files with 203 additions and 89 deletions

View File

@ -153,7 +153,7 @@ wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_in
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar
cd .. cd ..
python3 predict_system.py --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=ch --output=../output/table --vis_font_path=../doc/fonts/simfang.ttf python3 predict_system.py --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --output=../output/table --vis_font_path=../doc/fonts/simfang.ttf
``` ```
After running, each image will have a directory with the same name under the directory specified in the output field. Each table in the picture will be stored as an excel and figure area will be cropped and saved, the excel and image file name will be the coordinates of the table in the image. After running, each image will have a directory with the same name under the directory specified in the output field. Each table in the picture will be stored as an excel and figure area will be cropped and saved, the excel and image file name will be the coordinates of the table in the image.

View File

@ -8,11 +8,37 @@ PP-Structure是一个可用于复杂文档结构分析和处理的OCR工具包
- 支持表格区域进行结构化分析最终结果输出Excel文件 - 支持表格区域进行结构化分析最终结果输出Excel文件
- 支持python whl包和命令行两种方式简单易用 - 支持python whl包和命令行两种方式简单易用
- 支持版面分析和表格结构化两类任务自定义训练 - 支持版面分析和表格结构化两类任务自定义训练
- 支持文档关键信息提取-SER和RE任务
## 1. 效果展示 ## 1. 效果展示
### 1.1 版面分析和表格识别
<img src="../doc/table/ppstructure.GIF" width="100%"/> <img src="../doc/table/ppstructure.GIF" width="100%"/>
### 1.2 VQA
* SER
![](./vqa/images/result_ser/zh_val_0_ser.jpg) | ![](./vqa/images/result_ser/zh_val_42_ser.jpg)
---|---
图中不同颜色的框表示不同的类别对于XFUN数据集有`QUESTION`, `ANSWER`, `HEADER` 3种类别
* 深紫色HEADER
* 浅紫色QUESTION
* 军绿色ANSWER
在OCR检测框的左上方也标出了对应的类别和OCR识别结果。
* RE
![](./vqa/images/result_re/zh_val_21_re.jpg) | ![](./vqa/images/result_re/zh_val_40_re.jpg)
---|---
图中红色框表示问题蓝色框表示答案问题和答案之间使用绿色线连接。在OCR检测框的左上方也标出了对应的类别和OCR识别结果。
## 2. 安装 ## 2. 安装
@ -33,10 +59,16 @@ python3 -m pip install paddlepaddle-gpu==2.1.1 -i https://mirror.baidu.com/pypi/
``` ```
更多需求,请参照[安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。 更多需求,请参照[安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。
- **(2) 安装 Layout-Parser** - **(2) 安装依赖 **
```bash ```bash
# 版面分析所需 Layout-Parser
pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
# VQA所需 PaddleNLP
git clone https://github.com/PaddlePaddle/PaddleNLP -b develop
cd PaddleNLP
pip3 install -e .
``` ```
### 2.2 安装PaddleOCR包含PP-OCR和PP-Structure ### 2.2 安装PaddleOCR包含PP-OCR和PP-Structure
@ -44,7 +76,7 @@ pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-
- **1) PIP快速安装PaddleOCR whl包仅预测** - **1) PIP快速安装PaddleOCR whl包仅预测**
```bash ```bash
pip install "paddleocr>=2.2" # 推荐使用2.2+版本 pip3 install "paddleocr>=2.2" # 推荐使用2.2+版本
``` ```
- **2) 完整克隆PaddleOCR源码预测+训练)** - **2) 完整克隆PaddleOCR源码预测+训练)**
@ -63,12 +95,14 @@ git clone https://gitee.com/paddlepaddle/PaddleOCR
### 3.1 命令行使用(默认参数,极简) ### 3.1 命令行使用(默认参数,极简)
* 版面分析+表格识别
```bash ```bash
paddleocr --image_dir=../doc/table/1.png --type=structure paddleocr --image_dir=../doc/table/1.png --type=structure
``` ```
### 3.2 Python脚本使用自定义参数灵活 ### 3.2 Python脚本使用自定义参数灵活
* 版面分析+表格识别
```python ```python
import os import os
import cv2 import cv2
@ -98,6 +132,7 @@ im_show.save('result.jpg')
### 3.3 返回结果说明 ### 3.3 返回结果说明
PP-Structure的返回结果为一个dict组成的list示例如下 PP-Structure的返回结果为一个dict组成的list示例如下
* 版面分析+表格识别
```shell ```shell
[ [
{ 'type': 'Text', { 'type': 'Text',
@ -130,7 +165,7 @@ dict 里各个字段说明如下
运行完成后,每张图片会在`output`字段指定的目录下有一个同名目录图片里的每个表格会存储为一个excel图片区域会被裁剪之后保存下来excel文件和图片名名为表格在图片里的坐标。 运行完成后,每张图片会在`output`字段指定的目录下有一个同名目录图片里的每个表格会存储为一个excel图片区域会被裁剪之后保存下来excel文件和图片名名为表格在图片里的坐标。
## 4. PP-Structure Pipeline介绍 ## 4. PP-Structure 版面分析+表格识别 Pipeline介绍
![pipeline](../doc/table/pipeline.jpg) ![pipeline](../doc/table/pipeline.jpg)
@ -148,6 +183,8 @@ dict 里各个字段说明如下
使用如下命令即可完成预测引擎的推理 使用如下命令即可完成预测引擎的推理
* 版面分析+表格识别
```python ```python
cd ppstructure cd ppstructure
@ -161,9 +198,24 @@ wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_in
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar
cd .. cd ..
python3 predict_system.py --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=ch --output=../output/table --vis_font_path=../doc/fonts/simfang.ttf python3 predict_system.py --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --output=../output/table --vis_font_path=../doc/fonts/simfang.ttf
``` ```
运行完成后,每张图片会在`output`字段指定的目录下有一个同名目录图片里的每个表格会存储为一个excel图片区域会被裁剪之后保存下来excel文件和图片名名为表格在图片里的坐标。 运行完成后,每张图片会在`output`字段指定的目录下的`talbe`目录下有一个同名目录图片里的每个表格会存储为一个excel图片区域会被裁剪之后保存下来excel文件和图片名名为表格在图片里的坐标。
* VQA
```python
cd ppstructure
# 下载模型
mkdir inference && cd inference
# 下载SER xfun 模型并解压
wget https://paddleocr.bj.bcebos.com/pplayout/PP-Layout_v1.0_ser_pretrained.tar && tar xf PP-Layout_v1.0_ser_pretrained.tar
cd ..
python3 predict_system.py --model_name_or_path=vqa/PP-Layout_v1.0_ser_pretrained/ --mode=vqa --image_dir=vqa/images/input/zh_val_0.jpg --vis_font_path=../doc/fonts/simfang.ttf
```
运行完成后,每张图片会在`output`字段指定的目录下的`vqa`目录下存放可视化之后的图片,图片名和输入图片名一致。
**Model List** **Model List**
@ -185,4 +237,11 @@ OCR和表格识别模型
|en_ppocr_mobile_v2.0_table_rec|PubLayNet数据集训练的英文表格场景的文字识别|6.9M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_rec_train.tar) | |en_ppocr_mobile_v2.0_table_rec|PubLayNet数据集训练的英文表格场景的文字识别|6.9M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_rec_train.tar) |
|en_ppocr_mobile_v2.0_table_structure|PubLayNet数据集训练的英文表格场景的表格结构预测|18.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_structure_train.tar) | |en_ppocr_mobile_v2.0_table_structure|PubLayNet数据集训练的英文表格场景的表格结构预测|18.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_structure_train.tar) |
VQA
|模型名称|模型简介|推理模型大小|下载地址|
| --- | --- | --- | --- |
|PP-Layout_v1.0_ser_pretrained|基于LayoutXLM在xfun中文数据集上训练的SER模型|1.4G|[coming soon]() / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/PP-Layout_v1.0_ser_pretrained.tar) |
|PP-Layout_v1.0_re_pretrained|基于LayoutXLM在xfun中文数据集上训练的RE模型|1.4G|[coming soon]() / [训练模型](https://paddleocr.bj.bcebos.com/pplayout/PP-Layout_v1.0_re_pretrained.tar) |
如需要使用其他模型,可以在 [model_list](../doc/doc_ch/models_list.md) 下载模型或者使用自己训练好的模型配置到`det_model_dir`,`rec_model_dir`,`table_model_dir`三个字段即可。 如需要使用其他模型,可以在 [model_list](../doc/doc_ch/models_list.md) 下载模型或者使用自己训练好的模型配置到`det_model_dir`,`rec_model_dir`,`table_model_dir`三个字段即可。

View File

@ -30,6 +30,7 @@ from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.utils.logging import get_logger from ppocr.utils.logging import get_logger
from tools.infer.predict_system import TextSystem from tools.infer.predict_system import TextSystem
from ppstructure.table.predict_table import TableSystem, to_excel from ppstructure.table.predict_table import TableSystem, to_excel
from ppstructure.vqa.infer_ser_e2e import SerPredictor, draw_ser_results
from ppstructure.utility import parse_args, draw_structure_result from ppstructure.utility import parse_args, draw_structure_result
logger = get_logger() logger = get_logger()
@ -37,53 +38,75 @@ logger = get_logger()
class OCRSystem(object): class OCRSystem(object):
def __init__(self, args): def __init__(self, args):
import layoutparser as lp self.mode = args.mode
# args.det_limit_type = 'resize_long' if self.mode == 'structure':
args.drop_score = 0 import layoutparser as lp
if not args.show_log: # args.det_limit_type = 'resize_long'
logger.setLevel(logging.INFO) args.drop_score = 0
self.text_system = TextSystem(args) if not args.show_log:
self.table_system = TableSystem(args, self.text_system.text_detector, self.text_system.text_recognizer) logger.setLevel(logging.INFO)
self.text_system = TextSystem(args)
self.table_system = TableSystem(args,
self.text_system.text_detector,
self.text_system.text_recognizer)
config_path = None config_path = None
model_path = None model_path = None
if os.path.isdir(args.layout_path_model): if os.path.isdir(args.layout_path_model):
model_path = args.layout_path_model model_path = args.layout_path_model
else: else:
config_path = args.layout_path_model config_path = args.layout_path_model
self.table_layout = lp.PaddleDetectionLayoutModel(config_path=config_path, self.table_layout = lp.PaddleDetectionLayoutModel(
model_path=model_path, config_path=config_path,
threshold=0.5, enable_mkldnn=args.enable_mkldnn, model_path=model_path,
enforce_cpu=not args.use_gpu, thread_num=args.cpu_threads) threshold=0.5,
self.use_angle_cls = args.use_angle_cls enable_mkldnn=args.enable_mkldnn,
self.drop_score = args.drop_score enforce_cpu=not args.use_gpu,
thread_num=args.cpu_threads)
self.use_angle_cls = args.use_angle_cls
self.drop_score = args.drop_score
elif self.mode == 'vqa':
self.vqa_engine = SerPredictor(args)
def __call__(self, img): def __call__(self, img):
ori_im = img.copy() if self.mode == 'structure':
layout_res = self.table_layout.detect(img[..., ::-1]) ori_im = img.copy()
res_list = [] layout_res = self.table_layout.detect(img[..., ::-1])
for region in layout_res: res_list = []
x1, y1, x2, y2 = region.coordinates for region in layout_res:
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) x1, y1, x2, y2 = region.coordinates
roi_img = ori_im[y1:y2, x1:x2, :] x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
if region.type == 'Table': roi_img = ori_im[y1:y2, x1:x2, :]
res = self.table_system(roi_img) if region.type == 'Table':
else: res = self.table_system(roi_img)
filter_boxes, filter_rec_res = self.text_system(roi_img) else:
filter_boxes = [x + [x1, y1] for x in filter_boxes] filter_boxes, filter_rec_res = self.text_system(roi_img)
filter_boxes = [x.reshape(-1).tolist() for x in filter_boxes] filter_boxes = [x + [x1, y1] for x in filter_boxes]
# remove style char filter_boxes = [
style_token = ['<strike>', '<strike>', '<sup>', '</sub>', '<b>', '</b>', '<sub>', '</sup>', x.reshape(-1).tolist() for x in filter_boxes
'<overline>', '</overline>', '<underline>', '</underline>', '<i>', '</i>'] ]
filter_rec_res_tmp = [] # remove style char
for rec_res in filter_rec_res: style_token = [
rec_str, rec_conf = rec_res '<strike>', '<strike>', '<sup>', '</sub>', '<b>',
for token in style_token: '</b>', '<sub>', '</sup>', '<overline>', '</overline>',
if token in rec_str: '<underline>', '</underline>', '<i>', '</i>'
rec_str = rec_str.replace(token, '') ]
filter_rec_res_tmp.append((rec_str, rec_conf)) filter_rec_res_tmp = []
res = (filter_boxes, filter_rec_res_tmp) for rec_res in filter_rec_res:
res_list.append({'type': region.type, 'bbox': [x1, y1, x2, y2], 'img': roi_img, 'res': res}) rec_str, rec_conf = rec_res
for token in style_token:
if token in rec_str:
rec_str = rec_str.replace(token, '')
filter_rec_res_tmp.append((rec_str, rec_conf))
res = (filter_boxes, filter_rec_res_tmp)
res_list.append({
'type': region.type,
'bbox': [x1, y1, x2, y2],
'img': roi_img,
'res': res
})
elif self.mode == 'vqa':
res_list, _ = self.vqa_engine(img)
return res_list return res_list
@ -91,29 +114,35 @@ def save_structure_res(res, save_folder, img_name):
excel_save_folder = os.path.join(save_folder, img_name) excel_save_folder = os.path.join(save_folder, img_name)
os.makedirs(excel_save_folder, exist_ok=True) os.makedirs(excel_save_folder, exist_ok=True)
# save res # save res
with open(os.path.join(excel_save_folder, 'res.txt'), 'w', encoding='utf8') as f: with open(
os.path.join(excel_save_folder, 'res.txt'), 'w',
encoding='utf8') as f:
for region in res: for region in res:
if region['type'] == 'Table': if region['type'] == 'Table':
excel_path = os.path.join(excel_save_folder, '{}.xlsx'.format(region['bbox'])) excel_path = os.path.join(excel_save_folder,
'{}.xlsx'.format(region['bbox']))
to_excel(region['res'], excel_path) to_excel(region['res'], excel_path)
if region['type'] == 'Figure': if region['type'] == 'Figure':
roi_img = region['img'] roi_img = region['img']
img_path = os.path.join(excel_save_folder, '{}.jpg'.format(region['bbox'])) img_path = os.path.join(excel_save_folder,
'{}.jpg'.format(region['bbox']))
cv2.imwrite(img_path, roi_img) cv2.imwrite(img_path, roi_img)
else: else:
for box, rec_res in zip(region['res'][0], region['res'][1]): for box, rec_res in zip(region['res'][0], region['res'][1]):
f.write('{}\t{}\n'.format(np.array(box).reshape(-1).tolist(), rec_res)) f.write('{}\t{}\n'.format(
np.array(box).reshape(-1).tolist(), rec_res))
def main(args): def main(args):
image_file_list = get_image_file_list(args.image_dir) image_file_list = get_image_file_list(args.image_dir)
image_file_list = image_file_list image_file_list = image_file_list
image_file_list = image_file_list[args.process_id::args.total_process_num] image_file_list = image_file_list[args.process_id::args.total_process_num]
save_folder = args.output
os.makedirs(save_folder, exist_ok=True)
structure_sys = OCRSystem(args) structure_sys = OCRSystem(args)
img_num = len(image_file_list) img_num = len(image_file_list)
save_folder = os.path.join(args.output, structure_sys.mode)
os.makedirs(save_folder, exist_ok=True)
for i, image_file in enumerate(image_file_list): for i, image_file in enumerate(image_file_list):
logger.info("[{}/{}] {}".format(i, img_num, image_file)) logger.info("[{}/{}] {}".format(i, img_num, image_file))
img, flag = check_and_read_gif(image_file) img, flag = check_and_read_gif(image_file)
@ -126,10 +155,16 @@ def main(args):
continue continue
starttime = time.time() starttime = time.time()
res = structure_sys(img) res = structure_sys(img)
save_structure_res(res, save_folder, img_name)
draw_img = draw_structure_result(img, res, args.vis_font_path) if structure_sys.mode == 'structure':
cv2.imwrite(os.path.join(save_folder, img_name, 'show.jpg'), draw_img) save_structure_res(res, save_folder, img_name)
logger.info('result save to {}'.format(os.path.join(save_folder, img_name))) draw_img = draw_structure_result(img, res, args.vis_font_path)
img_save_path = os.path.join(save_folder, img_name, 'show.jpg')
elif structure_sys.mode == 'vqa':
draw_img = draw_ser_results(img, res, args.vis_font_path)
img_save_path = os.path.join(save_folder, img_name + '.jpg')
cv2.imwrite(img_save_path, draw_img)
logger.info('result save to {}'.format(img_save_path))
elapse = time.time() - starttime elapse = time.time() - starttime
logger.info("Predict time : {:.3f}s".format(elapse)) logger.info("Predict time : {:.3f}s".format(elapse))

View File

@ -20,9 +20,9 @@ We evaluated the algorithm on the PubTabNet<sup>[1]</sup> eval dataset, and the
|Method|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)| |Method|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)|
| --- | --- | | --- | --- |
| EDD<sup>[2]</sup> | 88.3 | | EDD<sup>[2]</sup> | 88.3 |
| Ours | 93.32 | | Ours | 93.32 |
## 3. How to use ## 3. How to use
@ -41,7 +41,7 @@ wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_tab
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar
cd .. cd ..
# run # run
python3 table/predict_table.py --det_model_dir=inference/en_ppocr_mobile_v2.0_table_det_infer --rec_model_dir=inference/en_ppocr_mobile_v2.0_table_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/table.jpg --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --output ../output/table python3 table/predict_table.py --det_model_dir=inference/en_ppocr_mobile_v2.0_table_det_infer --rec_model_dir=inference/en_ppocr_mobile_v2.0_table_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/table.jpg --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_dict_path=../ppocr/utils/dict/en_dict.txt --det_limit_side_len=736 --det_limit_type=min --output ../output/table
``` ```
Note: The above model is trained on the PubLayNet dataset and only supports English scanning scenarios. If you need to identify other scenarios, you need to train the model yourself and replace the three fields `det_model_dir`, `rec_model_dir`, `table_model_dir`. Note: The above model is trained on the PubLayNet dataset and only supports English scanning scenarios. If you need to identify other scenarios, you need to train the model yourself and replace the three fields `det_model_dir`, `rec_model_dir`, `table_model_dir`.
@ -82,8 +82,8 @@ python3 tools/train.py -c configs/table/table_mv3.yml -o Global.checkpoints=./yo
The table uses [TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src) as the evaluation metric of the model. Before the model evaluation, the three models in the pipeline need to be exported as inference models (we have provided them), and the gt for evaluation needs to be prepared. Examples of gt are as follows: The table uses [TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src) as the evaluation metric of the model. Before the model evaluation, the three models in the pipeline need to be exported as inference models (we have provided them), and the gt for evaluation needs to be prepared. Examples of gt are as follows:
```json ```json
{"PMC4289340_004_00.png": [ {"PMC4289340_004_00.png": [
["<html>", "<body>", "<table>", "<thead>", "<tr>", "<td>", "</td>", "<td>", "</td>", "<td>", "</td>", "</tr>", "</thead>", "<tbody>", "<tr>", "<td>", "</td>", "<td>", "</td>", "<td>", "</td>", "</tr>", "</tbody>", "</table>", "</body>", "</html>"], ["<html>", "<body>", "<table>", "<thead>", "<tr>", "<td>", "</td>", "<td>", "</td>", "<td>", "</td>", "</tr>", "</thead>", "<tbody>", "<tr>", "<td>", "</td>", "<td>", "</td>", "<td>", "</td>", "</tr>", "</tbody>", "</table>", "</body>", "</html>"],
[[1, 4, 29, 13], [137, 4, 161, 13], [215, 4, 236, 13], [1, 17, 30, 27], [137, 17, 147, 27], [215, 17, 225, 27]], [[1, 4, 29, 13], [137, 4, 161, 13], [215, 4, 236, 13], [1, 17, 30, 27], [137, 17, 147, 27], [215, 17, 225, 27]],
[["<b>", "F", "e", "a", "t", "u", "r", "e", "</b>"], ["<b>", "G", "b", "3", " ", "+", "</b>"], ["<b>", "G", "b", "3", " ", "-", "</b>"], ["<b>", "P", "a", "t", "i", "e", "n", "t", "s", "</b>"], ["6", "2"], ["4", "5"]] [["<b>", "F", "e", "a", "t", "u", "r", "e", "</b>"], ["<b>", "G", "b", "3", " ", "+", "</b>"], ["<b>", "G", "b", "3", " ", "-", "</b>"], ["<b>", "P", "a", "t", "i", "e", "n", "t", "s", "</b>"], ["6", "2"], ["4", "5"]]
]} ]}
``` ```
@ -95,7 +95,7 @@ In gt json, the key is the image name, the value is the corresponding gt, and gt
Use the following command to evaluate. After the evaluation is completed, the teds indicator will be output. Use the following command to evaluate. After the evaluation is completed, the teds indicator will be output.
```python ```python
cd PaddleOCR/ppstructure cd PaddleOCR/ppstructure
python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --gt_path=path/to/gt.json python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --det_limit_side_len=736 --det_limit_type=min --gt_path=path/to/gt.json
``` ```
If the PubLatNet eval dataset is used, it will be output If the PubLatNet eval dataset is used, it will be output
@ -113,4 +113,4 @@ After running, the excel sheet of each picture will be saved in the directory sp
Reference Reference
1. https://github.com/ibm-aur-nlp/PubTabNet 1. https://github.com/ibm-aur-nlp/PubTabNet
2. https://arxiv.org/pdf/1911.10683 2. https://arxiv.org/pdf/1911.10683

View File

@ -34,9 +34,9 @@
|算法|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)| |算法|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)|
| --- | --- | | --- | --- |
| EDD<sup>[2]</sup> | 88.3 | | EDD<sup>[2]</sup> | 88.3 |
| Ours | 93.32 | | Ours | 93.32 |
<a name="3"></a> <a name="3"></a>
## 3. 使用 ## 3. 使用
@ -56,7 +56,7 @@ wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_tab
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar
cd .. cd ..
# 执行预测 # 执行预测
python3 table/predict_table.py --det_model_dir=inference/en_ppocr_mobile_v2.0_table_det_infer --rec_model_dir=inference/en_ppocr_mobile_v2.0_table_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/table.jpg --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --output ../output/table python3 table/predict_table.py --det_model_dir=inference/en_ppocr_mobile_v2.0_table_det_infer --rec_model_dir=inference/en_ppocr_mobile_v2.0_table_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/table.jpg --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_dict_path=../ppocr/utils/dict/en_dict.txt --det_limit_side_len=736 --det_limit_type=min --output ../output/table
``` ```
运行完成后每张图片的excel表格会保存到output字段指定的目录下 运行完成后每张图片的excel表格会保存到output字段指定的目录下
@ -94,8 +94,8 @@ python3 tools/train.py -c configs/table/table_mv3.yml -o Global.checkpoints=./yo
表格使用 [TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src) 作为模型的评估指标。在进行模型评估之前需要将pipeline中的三个模型分别导出为inference模型(我们已经提供好)还需要准备评估的gt gt示例如下: 表格使用 [TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src) 作为模型的评估指标。在进行模型评估之前需要将pipeline中的三个模型分别导出为inference模型(我们已经提供好)还需要准备评估的gt gt示例如下:
```json ```json
{"PMC4289340_004_00.png": [ {"PMC4289340_004_00.png": [
["<html>", "<body>", "<table>", "<thead>", "<tr>", "<td>", "</td>", "<td>", "</td>", "<td>", "</td>", "</tr>", "</thead>", "<tbody>", "<tr>", "<td>", "</td>", "<td>", "</td>", "<td>", "</td>", "</tr>", "</tbody>", "</table>", "</body>", "</html>"], ["<html>", "<body>", "<table>", "<thead>", "<tr>", "<td>", "</td>", "<td>", "</td>", "<td>", "</td>", "</tr>", "</thead>", "<tbody>", "<tr>", "<td>", "</td>", "<td>", "</td>", "<td>", "</td>", "</tr>", "</tbody>", "</table>", "</body>", "</html>"],
[[1, 4, 29, 13], [137, 4, 161, 13], [215, 4, 236, 13], [1, 17, 30, 27], [137, 17, 147, 27], [215, 17, 225, 27]], [[1, 4, 29, 13], [137, 4, 161, 13], [215, 4, 236, 13], [1, 17, 30, 27], [137, 17, 147, 27], [215, 17, 225, 27]],
[["<b>", "F", "e", "a", "t", "u", "r", "e", "</b>"], ["<b>", "G", "b", "3", " ", "+", "</b>"], ["<b>", "G", "b", "3", " ", "-", "</b>"], ["<b>", "P", "a", "t", "i", "e", "n", "t", "s", "</b>"], ["6", "2"], ["4", "5"]] [["<b>", "F", "e", "a", "t", "u", "r", "e", "</b>"], ["<b>", "G", "b", "3", " ", "+", "</b>"], ["<b>", "G", "b", "3", " ", "-", "</b>"], ["<b>", "P", "a", "t", "i", "e", "n", "t", "s", "</b>"], ["6", "2"], ["4", "5"]]
]} ]}
``` ```
@ -107,7 +107,7 @@ json 中key为图片名value为对应的gtgt是一个由三个item组
准备完成后使用如下命令进行评估评估完成后会输出teds指标。 准备完成后使用如下命令进行评估评估完成后会输出teds指标。
```python ```python
cd PaddleOCR/ppstructure cd PaddleOCR/ppstructure
python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --gt_path=path/to/gt.json python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --det_limit_side_len=736 --det_limit_type=min --gt_path=path/to/gt.json
``` ```
如使用PubLatNet评估数据集将会输出 如使用PubLatNet评估数据集将会输出
```bash ```bash
@ -123,4 +123,4 @@ python3 table/predict_table.py --det_model_dir=path/to/det_model_dir --rec_model
Reference Reference
1. https://github.com/ibm-aur-nlp/PubTabNet 1. https://github.com/ibm-aur-nlp/PubTabNet
2. https://arxiv.org/pdf/1911.10683 2. https://arxiv.org/pdf/1911.10683

View File

@ -21,13 +21,31 @@ def init_args():
parser = infer_args() parser = infer_args()
# params for output # params for output
parser.add_argument("--output", type=str, default='./output/table') parser.add_argument("--output", type=str, default='./output')
# params for table structure # params for table structure
parser.add_argument("--table_max_len", type=int, default=488) parser.add_argument("--table_max_len", type=int, default=488)
parser.add_argument("--table_model_dir", type=str) parser.add_argument("--table_model_dir", type=str)
parser.add_argument("--table_char_type", type=str, default='en') parser.add_argument("--table_char_type", type=str, default='en')
parser.add_argument("--table_char_dict_path", type=str, default="../ppocr/utils/dict/table_structure_dict.txt") parser.add_argument(
parser.add_argument("--layout_path_model", type=str, default="lp://PubLayNet/ppyolov2_r50vd_dcn_365e_publaynet/config") "--table_char_dict_path",
type=str,
default="../ppocr/utils/dict/table_structure_dict.txt")
parser.add_argument(
"--layout_path_model",
type=str,
default="lp://PubLayNet/ppyolov2_r50vd_dcn_365e_publaynet/config")
# params for ser
parser.add_argument("--model_name_or_path", type=str)
parser.add_argument("--max_seq_length", type=int, default=512)
parser.add_argument(
"--label_map_path", type=str, default='./vqa/labels/labels_ser.txt')
parser.add_argument(
"--mode",
type=str,
default='structure',
help='structure and vqa is supported')
return parser return parser
@ -48,5 +66,6 @@ def draw_structure_result(image, result, font_path):
boxes.append(np.array(box).reshape(-1, 2)) boxes.append(np.array(box).reshape(-1, 2))
txts.append(rec_res[0]) txts.append(rec_res[0])
scores.append(rec_res[1]) scores.append(rec_res[1])
im_show = draw_ocr_box_txt(image, boxes, txts, scores, font_path=font_path,drop_score=0) im_show = draw_ocr_box_txt(
return im_show image, boxes, txts, scores, font_path=font_path, drop_score=0)
return im_show

View File

@ -23,12 +23,10 @@ from PIL import Image
import paddle import paddle
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification
from paddleocr import PaddleOCR
# relative reference # relative reference
from utils import parse_args, get_image_file_list, draw_ser_results, get_bio_label_maps from .utils import parse_args, get_image_file_list, draw_ser_results, get_bio_label_maps
from utils import pad_sentences, split_page, preprocess, postprocess, merge_preds_list_with_ocr_info from .utils import pad_sentences, split_page, preprocess, postprocess, merge_preds_list_with_ocr_info
def trans_poly_to_bbox(poly): def trans_poly_to_bbox(poly):
@ -52,6 +50,7 @@ def parse_ocr_info_for_ser(ocr_result):
class SerPredictor(object): class SerPredictor(object):
def __init__(self, args): def __init__(self, args):
self.max_seq_length = args.max_seq_length self.max_seq_length = args.max_seq_length
# init ser token and model # init ser token and model
@ -62,9 +61,11 @@ class SerPredictor(object):
self.model.eval() self.model.eval()
# init ocr_engine # init ocr_engine
from paddleocr import PaddleOCR
self.ocr_engine = PaddleOCR( self.ocr_engine = PaddleOCR(
rec_model_dir=args.ocr_rec_model_dir, rec_model_dir=args.rec_model_dir,
det_model_dir=args.ocr_det_model_dir, det_model_dir=args.det_model_dir,
use_angle_cls=False, use_angle_cls=False,
show_log=False) show_log=False)
# init dict # init dict

View File

@ -380,8 +380,8 @@ def parse_args():
parser.add_argument("--seed", type=int, default=2048, parser.add_argument("--seed", type=int, default=2048,
help="random seed for initialization",) help="random seed for initialization",)
parser.add_argument("--ocr_rec_model_dir", default=None, type=str, ) parser.add_argument("--rec_model_dir", default=None, type=str, )
parser.add_argument("--ocr_det_model_dir", default=None, type=str, ) parser.add_argument("--det_model_dir", default=None, type=str, )
parser.add_argument( parser.add_argument(
"--label_map_path", default="./labels/labels_ser.txt", type=str, required=False, ) "--label_map_path", default="./labels/labels_ser.txt", type=str, required=False, )
parser.add_argument("--infer_imgs", default=None, type=str, required=False) parser.add_argument("--infer_imgs", default=None, type=str, required=False)