remove fpn name
parent
48d8537959
commit
e45ff48347
|
@ -23,10 +23,10 @@ import paddle.nn.functional as F
|
|||
from paddle import ParamAttr
|
||||
|
||||
|
||||
def get_bias_attr(k, name):
|
||||
def get_bias_attr(k):
|
||||
stdv = 1.0 / math.sqrt(k * 1.0)
|
||||
initializer = paddle.nn.initializer.Uniform(-stdv, stdv)
|
||||
bias_attr = ParamAttr(initializer=initializer, name=name + "_b_attr")
|
||||
bias_attr = ParamAttr(initializer=initializer)
|
||||
return bias_attr
|
||||
|
||||
|
||||
|
@ -38,18 +38,14 @@ class Head(nn.Layer):
|
|||
out_channels=in_channels // 4,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
weight_attr=ParamAttr(name=name_list[0] + '.w_0'),
|
||||
weight_attr=ParamAttr(),
|
||||
bias_attr=False)
|
||||
self.conv_bn1 = nn.BatchNorm(
|
||||
num_channels=in_channels // 4,
|
||||
param_attr=ParamAttr(
|
||||
name=name_list[1] + '.w_0',
|
||||
initializer=paddle.nn.initializer.Constant(value=1.0)),
|
||||
bias_attr=ParamAttr(
|
||||
name=name_list[1] + '.b_0',
|
||||
initializer=paddle.nn.initializer.Constant(value=1e-4)),
|
||||
moving_mean_name=name_list[1] + '.w_1',
|
||||
moving_variance_name=name_list[1] + '.w_2',
|
||||
act='relu')
|
||||
self.conv2 = nn.Conv2DTranspose(
|
||||
in_channels=in_channels // 4,
|
||||
|
@ -57,19 +53,14 @@ class Head(nn.Layer):
|
|||
kernel_size=2,
|
||||
stride=2,
|
||||
weight_attr=ParamAttr(
|
||||
name=name_list[2] + '.w_0',
|
||||
initializer=paddle.nn.initializer.KaimingUniform()),
|
||||
bias_attr=get_bias_attr(in_channels // 4, name_list[-1] + "conv2"))
|
||||
bias_attr=get_bias_attr(in_channels // 4))
|
||||
self.conv_bn2 = nn.BatchNorm(
|
||||
num_channels=in_channels // 4,
|
||||
param_attr=ParamAttr(
|
||||
name=name_list[3] + '.w_0',
|
||||
initializer=paddle.nn.initializer.Constant(value=1.0)),
|
||||
bias_attr=ParamAttr(
|
||||
name=name_list[3] + '.b_0',
|
||||
initializer=paddle.nn.initializer.Constant(value=1e-4)),
|
||||
moving_mean_name=name_list[3] + '.w_1',
|
||||
moving_variance_name=name_list[3] + '.w_2',
|
||||
act="relu")
|
||||
self.conv3 = nn.Conv2DTranspose(
|
||||
in_channels=in_channels // 4,
|
||||
|
@ -77,10 +68,8 @@ class Head(nn.Layer):
|
|||
kernel_size=2,
|
||||
stride=2,
|
||||
weight_attr=ParamAttr(
|
||||
name=name_list[4] + '.w_0',
|
||||
initializer=paddle.nn.initializer.KaimingUniform()),
|
||||
bias_attr=get_bias_attr(in_channels // 4, name_list[-1] + "conv3"),
|
||||
)
|
||||
bias_attr=get_bias_attr(in_channels // 4), )
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
|
|
|
@ -32,61 +32,53 @@ class DBFPN(nn.Layer):
|
|||
in_channels=in_channels[0],
|
||||
out_channels=self.out_channels,
|
||||
kernel_size=1,
|
||||
weight_attr=ParamAttr(
|
||||
name='conv2d_51.w_0', initializer=weight_attr),
|
||||
weight_attr=ParamAttr(initializer=weight_attr),
|
||||
bias_attr=False)
|
||||
self.in3_conv = nn.Conv2D(
|
||||
in_channels=in_channels[1],
|
||||
out_channels=self.out_channels,
|
||||
kernel_size=1,
|
||||
weight_attr=ParamAttr(
|
||||
name='conv2d_50.w_0', initializer=weight_attr),
|
||||
weight_attr=ParamAttr(initializer=weight_attr),
|
||||
bias_attr=False)
|
||||
self.in4_conv = nn.Conv2D(
|
||||
in_channels=in_channels[2],
|
||||
out_channels=self.out_channels,
|
||||
kernel_size=1,
|
||||
weight_attr=ParamAttr(
|
||||
name='conv2d_49.w_0', initializer=weight_attr),
|
||||
weight_attr=ParamAttr(initializer=weight_attr),
|
||||
bias_attr=False)
|
||||
self.in5_conv = nn.Conv2D(
|
||||
in_channels=in_channels[3],
|
||||
out_channels=self.out_channels,
|
||||
kernel_size=1,
|
||||
weight_attr=ParamAttr(
|
||||
name='conv2d_48.w_0', initializer=weight_attr),
|
||||
weight_attr=ParamAttr(initializer=weight_attr),
|
||||
bias_attr=False)
|
||||
self.p5_conv = nn.Conv2D(
|
||||
in_channels=self.out_channels,
|
||||
out_channels=self.out_channels // 4,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
weight_attr=ParamAttr(
|
||||
name='conv2d_52.w_0', initializer=weight_attr),
|
||||
weight_attr=ParamAttr(initializer=weight_attr),
|
||||
bias_attr=False)
|
||||
self.p4_conv = nn.Conv2D(
|
||||
in_channels=self.out_channels,
|
||||
out_channels=self.out_channels // 4,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
weight_attr=ParamAttr(
|
||||
name='conv2d_53.w_0', initializer=weight_attr),
|
||||
weight_attr=ParamAttr(initializer=weight_attr),
|
||||
bias_attr=False)
|
||||
self.p3_conv = nn.Conv2D(
|
||||
in_channels=self.out_channels,
|
||||
out_channels=self.out_channels // 4,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
weight_attr=ParamAttr(
|
||||
name='conv2d_54.w_0', initializer=weight_attr),
|
||||
weight_attr=ParamAttr(initializer=weight_attr),
|
||||
bias_attr=False)
|
||||
self.p2_conv = nn.Conv2D(
|
||||
in_channels=self.out_channels,
|
||||
out_channels=self.out_channels // 4,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
weight_attr=ParamAttr(
|
||||
name='conv2d_55.w_0', initializer=weight_attr),
|
||||
weight_attr=ParamAttr(initializer=weight_attr),
|
||||
bias_attr=False)
|
||||
|
||||
def forward(self, x):
|
||||
|
|
Loading…
Reference in New Issue