Merge branch 'dygraph' of https://github.com/PaddlePaddle/PaddleOCR into tipc
commit
ee9bf6c5a5
|
@ -5,12 +5,12 @@ infer_model:./inference/ch_PP-OCRv2_det_infer/
|
|||
infer_export:null
|
||||
infer_quant:True
|
||||
inference:tools/infer/predict_system.py
|
||||
--use_gpu:False
|
||||
--enable_mkldnn:False
|
||||
--use_gpu:False|True
|
||||
--enable_mkldnn:False|True
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1
|
||||
--use_tensorrt:False
|
||||
--precision:int8
|
||||
--use_tensorrt:False|True
|
||||
--precision:fp32|fp16
|
||||
--det_model_dir:
|
||||
--image_dir:./inference/ch_det_data_50/all-sum-510/
|
||||
--rec_model_dir:./inference/ch_PP-OCRv2_rec_infer/
|
||||
|
|
|
@ -1,15 +1,17 @@
|
|||
===========================kl_quant_params===========================
|
||||
model_name:PPOCRv2_ocr_det_kl
|
||||
python:python3.7
|
||||
Global.pretrained_model:null
|
||||
Global.save_inference_dir:null
|
||||
infer_model:./inference/ch_PP-OCRv2_det_infer/
|
||||
infer_export:deploy/slim/quantization/quant_kl.py -c configs/det/ch_PP-OCRv2/ch_PP-OCRv2_det_cml.yml -o
|
||||
infer_quant:True
|
||||
inference:tools/infer/predict_det.py
|
||||
--use_gpu:False
|
||||
--enable_mkldnn:False
|
||||
--use_gpu:False|True
|
||||
--enable_mkldnn:True
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1
|
||||
--use_tensorrt:False
|
||||
--use_tensorrt:False|True
|
||||
--precision:int8
|
||||
--det_model_dir:
|
||||
--image_dir:./inference/ch_det_data_50/all-sum-510/
|
||||
|
|
|
@ -1,15 +1,17 @@
|
|||
===========================kl_quant_params===========================
|
||||
model_name:PPOCRv2_ocr_rec_kl
|
||||
python:python3.7
|
||||
Global.pretrained_model:null
|
||||
Global.save_inference_dir:null
|
||||
infer_model:./inference/ch_PP-OCRv2_rec_infer/
|
||||
infer_export:deploy/slim/quantization/quant_kl.py -c test_tipc/configs/ch_PP-OCRv2_rec/ch_PP-OCRv2_rec_distillation.yml -o
|
||||
infer_quant:True
|
||||
inference:tools/infer/predict_rec.py
|
||||
--use_gpu:False
|
||||
--enable_mkldnn:False
|
||||
--use_gpu:False|True
|
||||
--enable_mkldnn:False|True
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1|6
|
||||
--use_tensorrt:False
|
||||
--use_tensorrt:True
|
||||
--precision:int8
|
||||
--rec_model_dir:
|
||||
--image_dir:./inference/rec_inference
|
||||
|
|
|
@ -4,7 +4,7 @@ python:python3.7
|
|||
gpu_list:0|0,1
|
||||
Global.use_gpu:True|True
|
||||
Global.auto_cast:null
|
||||
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
|
||||
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=300
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
|
||||
Global.pretrained_model:null
|
||||
|
@ -15,7 +15,7 @@ null:null
|
|||
trainer:fpgm_train
|
||||
norm_train:null
|
||||
pact_train:null
|
||||
fpgm_train:deploy/slim/prune/sensitivity_anal.py -c test_tipc/configs/ppocr_det_mobile/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy
|
||||
fpgm_train:deploy/slim/prune/sensitivity_anal.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
|
@ -29,7 +29,7 @@ Global.save_inference_dir:./output/
|
|||
Global.pretrained_model:
|
||||
norm_export:null
|
||||
quant_export:null
|
||||
fpgm_export:deploy/slim/prune/export_prune_model.py -c test_tipc/configs/ppocr_det_mobile/det_mv3_db.yml -o
|
||||
fpgm_export:deploy/slim/prune/export_prune_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
|
||||
distill_export:null
|
||||
export1:null
|
||||
export2:null
|
||||
|
|
|
@ -5,12 +5,12 @@ infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
|
|||
infer_export:null
|
||||
infer_quant:True
|
||||
inference:tools/infer/predict_system.py
|
||||
--use_gpu:False
|
||||
--enable_mkldnn:False
|
||||
--use_gpu:False|True
|
||||
--enable_mkldnn:False|True
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1
|
||||
--use_tensorrt:False
|
||||
--precision:int8
|
||||
--use_tensorrt:False|True
|
||||
--precision:fp32|fp16
|
||||
--det_model_dir:
|
||||
--image_dir:./inference/ch_det_data_50/all-sum-510/
|
||||
--rec_model_dir:./inference/ch_ppocr_mobile_v2.0_rec_infer/
|
||||
|
|
|
@ -4,7 +4,7 @@ python:python3.7
|
|||
gpu_list:0|0,1
|
||||
Global.use_gpu:True|True
|
||||
Global.auto_cast:null
|
||||
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
|
||||
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=300
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
|
||||
Global.pretrained_model:null
|
||||
|
@ -13,7 +13,7 @@ train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
|
|||
null:null
|
||||
##
|
||||
trainer:norm_train
|
||||
norm_train:tools/train.py -c test_tipc/configs/ppocr_det_mobile/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
|
||||
norm_train:tools/train.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
|
||||
pact_train:null
|
||||
fpgm_train:null
|
||||
distill_train:null
|
||||
|
@ -27,7 +27,7 @@ null:null
|
|||
===========================infer_params===========================
|
||||
Global.save_inference_dir:./output/
|
||||
Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c test_tipc/configs/ppocr_det_mobile/det_mv3_db.yml -o
|
||||
norm_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
|
||||
quant_export:null
|
||||
fpgm_export:null
|
||||
distill_export:null
|
||||
|
|
|
@ -4,7 +4,7 @@ python:python
|
|||
gpu_list:-1
|
||||
Global.use_gpu:False
|
||||
Global.auto_cast:null
|
||||
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
|
||||
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=300
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
|
||||
Global.pretrained_model:null
|
||||
|
@ -12,10 +12,10 @@ train_model_name:latest
|
|||
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train|pact_train|fpgm_train
|
||||
norm_train:tools/train.py -c test_tipc/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
|
||||
pact_train:deploy/slim/quantization/quant.py -c test_tipc/configs/det_mv3_db.yml -o
|
||||
fpgm_train:deploy/slim/prune/sensitivity_anal.py -c test_tipc/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy
|
||||
trainer:norm_train
|
||||
norm_train:tools/train.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
|
||||
pact_train:null
|
||||
fpgm_train:null
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
|
@ -27,9 +27,9 @@ null:null
|
|||
===========================infer_params===========================
|
||||
Global.save_inference_dir:./output/
|
||||
Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c test_tipc/configs/det_mv3_db.yml -o
|
||||
quant_export:deploy/slim/quantization/export_model.py -c test_tipc/configs/det_mv3_db.yml -o
|
||||
fpgm_export:deploy/slim/prune/export_prune_model.py -c test_tipc/configs/det_mv3_db.yml -o
|
||||
norm_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
|
||||
quant_export:null
|
||||
fpgm_export:null
|
||||
distill_export:null
|
||||
export1:null
|
||||
export2:null
|
||||
|
|
|
@ -4,7 +4,7 @@ python:python
|
|||
gpu_list:0
|
||||
Global.use_gpu:True
|
||||
Global.auto_cast:fp32|amp
|
||||
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
|
||||
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=300
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
|
||||
Global.pretrained_model:null
|
||||
|
@ -12,10 +12,10 @@ train_model_name:latest
|
|||
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train|pact_train|fpgm_train
|
||||
norm_train:tools/train.py -c test_tipc/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
|
||||
pact_train:deploy/slim/quantization/quant.py -c test_tipc/configs/det_mv3_db.yml -o
|
||||
fpgm_train:deploy/slim/prune/sensitivity_anal.py -c test_tipc/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy
|
||||
trainer:norm_train
|
||||
norm_train:tools/train.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
|
||||
pact_train:null
|
||||
fpgm_train:null
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
|
@ -27,9 +27,9 @@ null:null
|
|||
===========================infer_params===========================
|
||||
Global.save_inference_dir:./output/
|
||||
Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c test_tipc/configs/det_mv3_db.yml -o
|
||||
quant_export:deploy/slim/quantization/export_model.py -c test_tipc/configs/det_mv3_db.yml -o
|
||||
fpgm_export:deploy/slim/prune/export_prune_model.py -c test_tipc/configs/det_mv3_db.yml -o
|
||||
norm_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
|
||||
quant_export:null
|
||||
fpgm_export:null
|
||||
distill_export:null
|
||||
export1:null
|
||||
export2:null
|
||||
|
@ -49,63 +49,4 @@ inference:tools/infer/predict_det.py
|
|||
null:null
|
||||
--benchmark:True
|
||||
null:null
|
||||
===========================cpp_infer_params===========================
|
||||
use_opencv:True
|
||||
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
|
||||
infer_quant:False
|
||||
inference:./deploy/cpp_infer/build/ppocr det
|
||||
--use_gpu:True|False
|
||||
--enable_mkldnn:True|False
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1
|
||||
--use_tensorrt:False|True
|
||||
--precision:fp32|fp16
|
||||
--det_model_dir:
|
||||
--image_dir:./inference/ch_det_data_50/all-sum-510/
|
||||
null:null
|
||||
--benchmark:True
|
||||
===========================serving_params===========================
|
||||
model_name:ocr_det
|
||||
python:python3.7
|
||||
trans_model:-m paddle_serving_client.convert
|
||||
--dirname:./inference/ch_ppocr_mobile_v2.0_det_infer/
|
||||
--model_filename:inference.pdmodel
|
||||
--params_filename:inference.pdiparams
|
||||
--serving_server:./deploy/pdserving/ppocr_det_mobile_2.0_serving/
|
||||
--serving_client:./deploy/pdserving/ppocr_det_mobile_2.0_client/
|
||||
serving_dir:./deploy/pdserving
|
||||
web_service:web_service_det.py --config=config.yml --opt op.det.concurrency=1
|
||||
op.det.local_service_conf.devices:null|0
|
||||
op.det.local_service_conf.use_mkldnn:True|False
|
||||
op.det.local_service_conf.thread_num:1|6
|
||||
op.det.local_service_conf.use_trt:False|True
|
||||
op.det.local_service_conf.precision:fp32|fp16|int8
|
||||
pipline:pipeline_http_client.py|pipeline_rpc_client.py
|
||||
--image_dir=../../doc/imgs
|
||||
===========================kl_quant_params===========================
|
||||
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
|
||||
infer_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
|
||||
infer_quant:True
|
||||
inference:tools/infer/predict_det.py
|
||||
--use_gpu:True|False
|
||||
--enable_mkldnn:True|False
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1
|
||||
--use_tensorrt:False|True
|
||||
--precision:int8
|
||||
--det_model_dir:
|
||||
--image_dir:./inference/ch_det_data_50/all-sum-510/
|
||||
null:null
|
||||
--benchmark:True
|
||||
null:null
|
||||
null:null
|
||||
===========================lite_params===========================
|
||||
inference:./ocr_db_crnn det
|
||||
infer_model:./models/ch_ppocr_mobile_v2.0_det_opt.nb|./models/ch_ppocr_mobile_v2.0_det_slim_opt.nb
|
||||
--cpu_threads:1|4
|
||||
--batch_size:1
|
||||
--power_mode:LITE_POWER_HIGH|LITE_POWER_LOW
|
||||
--image_dir:./test_data/icdar2015_lite/text_localization/ch4_test_images/|./test_data/icdar2015_lite/text_localization/ch4_test_images/img_233.jpg
|
||||
--config_dir:./config.txt
|
||||
--rec_dict_dir:./ppocr_keys_v1.txt
|
||||
--benchmark:True
|
||||
|
||||
|
|
|
@ -1,15 +1,17 @@
|
|||
===========================kl_quant_params===========================
|
||||
model_name:PPOCRv2_ocr_det
|
||||
model_name:ch_ppocr_mobile_v2.0_det_KL
|
||||
python:python3.7
|
||||
Global.pretrained_model:null
|
||||
Global.save_inference_dir:null
|
||||
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
|
||||
infer_export:deploy/slim/quantization/quant_kl.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
|
||||
infer_quant:True
|
||||
inference:tools/infer/predict_det.py
|
||||
--use_gpu:False
|
||||
--enable_mkldnn:False
|
||||
--use_gpu:False|True
|
||||
--enable_mkldnn:True
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1
|
||||
--use_tensorrt:False
|
||||
--use_tensorrt:False|True
|
||||
--precision:int8
|
||||
--det_model_dir:
|
||||
--image_dir:./inference/ch_det_data_50/all-sum-510/
|
||||
|
|
|
@ -4,7 +4,7 @@ python:python3.7
|
|||
gpu_list:0|0,1
|
||||
Global.use_gpu:True|True
|
||||
Global.auto_cast:null
|
||||
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
|
||||
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=300
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
|
||||
Global.pretrained_model:null
|
||||
|
@ -14,7 +14,7 @@ null:null
|
|||
##
|
||||
trainer:pact_train
|
||||
norm_train:null
|
||||
pact_train:deploy/slim/quantization/quant.py -c test_tipc/configs/ppocr_det_mobile/det_mv3_db.yml -o
|
||||
pact_train:deploy/slim/quantization/quant.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
|
||||
fpgm_train:null
|
||||
distill_train:null
|
||||
null:null
|
||||
|
@ -28,7 +28,7 @@ null:null
|
|||
Global.save_inference_dir:./output/
|
||||
Global.pretrained_model:
|
||||
norm_export:null
|
||||
quant_export:deploy/slim/quantization/export_model.py -c test_tipc/configs/ppocr_det_mobile/det_mv3_db.yml -o
|
||||
quant_export:deploy/slim/quantization/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
|
||||
fpgm_export:null
|
||||
distill_export:null
|
||||
export1:null
|
||||
|
|
|
@ -0,0 +1,51 @@
|
|||
===========================train_params===========================
|
||||
model_name:ch_ppocr_mobile_v2.0_rec
|
||||
python:python3.7
|
||||
gpu_list:0|0,1
|
||||
Global.use_gpu:True|True
|
||||
Global.auto_cast:null
|
||||
Global.epoch_num:lite_train_infer=2|whole_train_infer=300
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_infer=128|whole_train_infer=128
|
||||
Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./inference/rec_inference
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train
|
||||
norm_train:tools/train.py -c configs/rec/rec_icdar15_train.yml -o
|
||||
pact_train:null
|
||||
fpgm_train:null
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c configs/rec/rec_icdar15_train.yml -o
|
||||
null:null
|
||||
##
|
||||
===========================infer_params===========================
|
||||
Global.save_inference_dir:./output/
|
||||
Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c configs/rec/rec_icdar15_train.yml -o
|
||||
quant_export:null
|
||||
fpgm_export:null
|
||||
distill_export:null
|
||||
export1:null
|
||||
export2:null
|
||||
##
|
||||
infer_model:null
|
||||
infer_export:tools/export_model.py -c configs/rec/rec_icdar15_train.yml -o
|
||||
infer_quant:False
|
||||
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100" --rec_algorithm="RARE"
|
||||
--use_gpu:True|False
|
||||
--enable_mkldnn:True|False
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1|6
|
||||
--use_tensorrt:True|False
|
||||
--precision:fp32|fp16|int8
|
||||
--rec_model_dir:
|
||||
--image_dir:./inference/rec_inference
|
||||
--save_log_path:./test/output/
|
||||
--benchmark:True
|
||||
null:null
|
|
@ -0,0 +1,19 @@
|
|||
===========================ch_ppocr_mobile_v2.0===========================
|
||||
model_name:ch_ppocr_server_v2.0
|
||||
python:python3.7
|
||||
infer_model:./inference/ch_ppocr_server_v2.0_det_infer/
|
||||
infer_export:null
|
||||
infer_quant:True
|
||||
inference:tools/infer/predict_system.py
|
||||
--use_gpu:False
|
||||
--enable_mkldnn:False
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1
|
||||
--use_tensorrt:False
|
||||
--precision:int8
|
||||
--det_model_dir:
|
||||
--image_dir:./inference/ch_det_data_50/all-sum-510/
|
||||
--rec_model_dir:./inference/ch_ppocr_server_v2.0_rec_infer/
|
||||
--benchmark:True
|
||||
null:null
|
||||
null:null
|
|
@ -0,0 +1,51 @@
|
|||
===========================train_params===========================
|
||||
model_name:ch_ppocr_server_v2.0_rec
|
||||
python:python3.7
|
||||
gpu_list:0|0,1
|
||||
Global.use_gpu:True|True
|
||||
Global.auto_cast:null
|
||||
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
|
||||
Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./inference/rec_inference
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train
|
||||
norm_train:tools/train.py -c test_tipc/configs/ch_ppocr_server_v2.0_rec/rec_icdar15_train.yml -o
|
||||
pact_train:null
|
||||
fpgm_train:null
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c test_tipc/configs/ch_ppocr_server_v2.0_rec/rec_icdar15_train.yml -o
|
||||
null:null
|
||||
##
|
||||
===========================infer_params===========================
|
||||
Global.save_inference_dir:./output/
|
||||
Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c test_tipc/configs/ch_ppocr_server_v2.0_rec/rec_icdar15_train.yml -o
|
||||
quant_export:null
|
||||
fpgm_export:null
|
||||
distill_export:null
|
||||
export1:null
|
||||
export2:null
|
||||
##
|
||||
infer_model:null
|
||||
infer_export:tools/export_model.py -c test_tipc/configs/ch_ppocr_server_v2.0_rec/rec_icdar15_train.yml -o
|
||||
infer_quant:False
|
||||
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
|
||||
--use_gpu:True|False
|
||||
--enable_mkldnn:True|False
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1|6
|
||||
--use_tensorrt:True|False
|
||||
--precision:fp32|fp16|int8
|
||||
--rec_model_dir:
|
||||
--image_dir:./inference/rec_inference
|
||||
--save_log_path:./test/output/
|
||||
--benchmark:True
|
||||
null:null
|
|
@ -0,0 +1,51 @@
|
|||
===========================train_params===========================
|
||||
model_name:det_mv3_db_v2.0
|
||||
python:python3.7
|
||||
gpu_list:0|0,1
|
||||
Global.use_gpu:True|True
|
||||
Global.auto_cast:null
|
||||
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4
|
||||
Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train
|
||||
norm_train:tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
|
||||
pact_train:null
|
||||
fpgm_train:null
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:null
|
||||
null:null
|
||||
##
|
||||
===========================infer_params===========================
|
||||
Global.save_inference_dir:./output/
|
||||
Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c configs/det/det_mv3_db.yml -o
|
||||
quant_export:null
|
||||
fpgm_export:null
|
||||
distill_export:null
|
||||
export1:null
|
||||
export2:null
|
||||
inference_dir:null
|
||||
train_model:./inference/det_mv3_db_v2.0_train/best_accuracy
|
||||
infer_export:tools/export_model.py -c configs/det/det_mv3_db.yml -o
|
||||
infer_quant:False
|
||||
inference:tools/infer/predict_det.py
|
||||
--use_gpu:True|False
|
||||
--enable_mkldnn:True|False
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1
|
||||
--use_tensorrt:False|True
|
||||
--precision:fp32|fp16|int8
|
||||
--det_model_dir:
|
||||
--image_dir:./inference/ch_det_data_50/all-sum-510/
|
||||
null:null
|
||||
--benchmark:True
|
||||
null:null
|
|
@ -0,0 +1,51 @@
|
|||
===========================train_params===========================
|
||||
model_name:det_r50_db_v2.0
|
||||
python:python3.7
|
||||
gpu_list:0|0,1
|
||||
Global.use_gpu:True|True
|
||||
Global.auto_cast:null
|
||||
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_lite_infer=4
|
||||
Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train
|
||||
norm_train:tools/train.py -c configs/det/det_r50_vd_db.yml -o
|
||||
quant_export:null
|
||||
fpgm_export:null
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c configs/det/det_r50_vd_db.yml -o
|
||||
null:null
|
||||
##
|
||||
===========================infer_params===========================
|
||||
Global.save_inference_dir:./output/
|
||||
Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c configs/det/det_r50_vd_db.yml -o
|
||||
quant_export:null
|
||||
fpgm_export:null
|
||||
distill_export:null
|
||||
export1:null
|
||||
export2:null
|
||||
##
|
||||
train_model:./inference/ch_ppocr_server_v2.0_det_train/best_accuracy
|
||||
infer_export:tools/export_model.py -c configs/det/det_r50_vd_db.yml -o
|
||||
infer_quant:False
|
||||
inference:tools/infer/predict_det.py
|
||||
--use_gpu:True|False
|
||||
--enable_mkldnn:True|False
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1
|
||||
--use_tensorrt:False|True
|
||||
--precision:fp32|fp16|int8
|
||||
--det_model_dir:
|
||||
--image_dir:./inference/ch_det_data_50/all-sum-510/
|
||||
--save_log_path:null
|
||||
--benchmark:True
|
||||
null:null
|
|
@ -0,0 +1,103 @@
|
|||
Global:
|
||||
use_gpu: True
|
||||
epoch_num: 21
|
||||
log_smooth_window: 20
|
||||
print_batch_step: 10
|
||||
save_model_dir: ./output/rec/nrtr/
|
||||
save_epoch_step: 1
|
||||
# evaluation is run every 2000 iterations
|
||||
eval_batch_step: [0, 2000]
|
||||
cal_metric_during_train: True
|
||||
pretrained_model:
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
||||
infer_img: doc/imgs_words_en/word_10.png
|
||||
# for data or label process
|
||||
character_dict_path: ppocr/utils/EN_symbol_dict.txt
|
||||
max_text_length: 25
|
||||
infer_mode: False
|
||||
use_space_char: False
|
||||
save_res_path: ./output/rec/predicts_nrtr.txt
|
||||
|
||||
Optimizer:
|
||||
name: Adam
|
||||
beta1: 0.9
|
||||
beta2: 0.99
|
||||
clip_norm: 5.0
|
||||
lr:
|
||||
name: Cosine
|
||||
learning_rate: 0.0005
|
||||
warmup_epoch: 2
|
||||
regularizer:
|
||||
name: 'L2'
|
||||
factor: 0.
|
||||
|
||||
Architecture:
|
||||
model_type: rec
|
||||
algorithm: NRTR
|
||||
in_channels: 1
|
||||
Transform:
|
||||
Backbone:
|
||||
name: MTB
|
||||
cnn_num: 2
|
||||
Head:
|
||||
name: Transformer
|
||||
d_model: 512
|
||||
num_encoder_layers: 6
|
||||
beam_size: -1 # When Beam size is greater than 0, it means to use beam search when evaluation.
|
||||
|
||||
|
||||
Loss:
|
||||
name: NRTRLoss
|
||||
smoothing: True
|
||||
|
||||
PostProcess:
|
||||
name: NRTRLabelDecode
|
||||
|
||||
Metric:
|
||||
name: RecMetric
|
||||
main_indicator: acc
|
||||
|
||||
Train:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/ic15_data/
|
||||
label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- NRTRLabelEncode: # Class handling label
|
||||
- NRTRRecResizeImg:
|
||||
image_shape: [100, 32]
|
||||
resize_type: PIL # PIL or OpenCV
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: True
|
||||
batch_size_per_card: 512
|
||||
drop_last: True
|
||||
num_workers: 8
|
||||
|
||||
Eval:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/ic15_data
|
||||
label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- NRTRLabelEncode: # Class handling label
|
||||
- NRTRRecResizeImg:
|
||||
image_shape: [100, 32]
|
||||
resize_type: PIL # PIL or OpenCV
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: False
|
||||
drop_last: False
|
||||
batch_size_per_card: 256
|
||||
num_workers: 1
|
||||
use_shared_memory: False
|
|
@ -0,0 +1,52 @@
|
|||
===========================train_params===========================
|
||||
model_name:rec_mtb_nrtr
|
||||
python:python3.7
|
||||
gpu_list:0|0,1
|
||||
Global.use_gpu:True|True
|
||||
Global.auto_cast:null
|
||||
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
|
||||
Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./inference/rec_inference
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train
|
||||
norm_train:tools/train.py -c test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml -o
|
||||
pact_train:null
|
||||
fpgm_train:null
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml -o
|
||||
null:null
|
||||
##
|
||||
===========================infer_params===========================
|
||||
Global.save_inference_dir:./output/
|
||||
Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml -o
|
||||
quant_export:null
|
||||
fpgm_export:null
|
||||
distill_export:null
|
||||
export1:null
|
||||
export2:null
|
||||
##
|
||||
infer_model:null
|
||||
infer_export:tools/export_model.py -c test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml -o
|
||||
infer_quant:False
|
||||
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/EN_symbol_dict.txt --rec_image_shape="1,32,100" --rec_algorithm="NRTR"
|
||||
--use_gpu:True|False
|
||||
--enable_mkldnn:True|False
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1|6
|
||||
--use_tensorrt:True|False
|
||||
--precision:fp32|int8
|
||||
--rec_model_dir:
|
||||
--image_dir:./inference/rec_inference
|
||||
--save_log_path:./test/output/
|
||||
--benchmark:True
|
||||
null:null
|
||||
|
|
@ -0,0 +1,97 @@
|
|||
Global:
|
||||
use_gpu: True
|
||||
epoch_num: 72
|
||||
log_smooth_window: 20
|
||||
print_batch_step: 10
|
||||
save_model_dir: ./output/rec/mv3_none_bilstm_ctc/
|
||||
save_epoch_step: 3
|
||||
# evaluation is run every 2000 iterations
|
||||
eval_batch_step: [0, 2000]
|
||||
cal_metric_during_train: True
|
||||
pretrained_model:
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
||||
infer_img: doc/imgs_words_en/word_10.png
|
||||
# for data or label process
|
||||
character_dict_path:
|
||||
max_text_length: 25
|
||||
infer_mode: False
|
||||
use_space_char: False
|
||||
save_res_path: ./output/rec/predicts_mv3_none_bilstm_ctc.txt
|
||||
|
||||
Optimizer:
|
||||
name: Adam
|
||||
beta1: 0.9
|
||||
beta2: 0.999
|
||||
lr:
|
||||
learning_rate: 0.0005
|
||||
regularizer:
|
||||
name: 'L2'
|
||||
factor: 0
|
||||
|
||||
Architecture:
|
||||
model_type: rec
|
||||
algorithm: CRNN
|
||||
Transform:
|
||||
Backbone:
|
||||
name: MobileNetV3
|
||||
scale: 0.5
|
||||
model_name: large
|
||||
Neck:
|
||||
name: SequenceEncoder
|
||||
encoder_type: rnn
|
||||
hidden_size: 96
|
||||
Head:
|
||||
name: CTCHead
|
||||
fc_decay: 0
|
||||
|
||||
Loss:
|
||||
name: CTCLoss
|
||||
|
||||
PostProcess:
|
||||
name: CTCLabelDecode
|
||||
|
||||
Metric:
|
||||
name: RecMetric
|
||||
main_indicator: acc
|
||||
|
||||
Train:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/ic15_data/
|
||||
label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- CTCLabelEncode: # Class handling label
|
||||
- RecResizeImg:
|
||||
image_shape: [3, 32, 100]
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: False
|
||||
batch_size_per_card: 256
|
||||
drop_last: True
|
||||
num_workers: 8
|
||||
|
||||
Eval:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/ic15_data
|
||||
label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- CTCLabelEncode: # Class handling label
|
||||
- RecResizeImg:
|
||||
image_shape: [3, 32, 100]
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: False
|
||||
drop_last: False
|
||||
batch_size_per_card: 256
|
||||
num_workers: 4
|
|
@ -0,0 +1,51 @@
|
|||
===========================train_params===========================
|
||||
model_name:rec_mv3_none_bilstm_ctc_v2.0
|
||||
python:python3.7
|
||||
gpu_list:0|0,1
|
||||
Global.use_gpu:True|True
|
||||
Global.auto_cast:null
|
||||
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
|
||||
Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./inference/rec_inference
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train
|
||||
norm_train:tools/train.py -c test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||
pact_train:null
|
||||
fpgm_train:null
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||
null:null
|
||||
##
|
||||
===========================infer_params===========================
|
||||
Global.save_inference_dir:./output/
|
||||
Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||
quant_export:null
|
||||
fpgm_export:null
|
||||
distill_export:null
|
||||
export1:null
|
||||
export2:null
|
||||
##
|
||||
infer_model:null
|
||||
infer_export:tools/export_model.py -c test_tipc/configs/rec_mv3_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||
infer_quant:False
|
||||
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
|
||||
--use_gpu:True|False
|
||||
--enable_mkldnn:True|False
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1|6
|
||||
--use_tensorrt:True|False
|
||||
--precision:fp32|fp16|int8
|
||||
--rec_model_dir:
|
||||
--image_dir:./inference/rec_inference
|
||||
--save_log_path:./test/output/
|
||||
--benchmark:True
|
||||
null:null
|
|
@ -0,0 +1,96 @@
|
|||
Global:
|
||||
use_gpu: True
|
||||
epoch_num: 72
|
||||
log_smooth_window: 20
|
||||
print_batch_step: 10
|
||||
save_model_dir: ./output/rec/mv3_none_none_ctc/
|
||||
save_epoch_step: 3
|
||||
# evaluation is run every 2000 iterations
|
||||
eval_batch_step: [0, 2000]
|
||||
cal_metric_during_train: True
|
||||
pretrained_model:
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
||||
infer_img: doc/imgs_words_en/word_10.png
|
||||
# for data or label process
|
||||
character_dict_path:
|
||||
max_text_length: 25
|
||||
infer_mode: False
|
||||
use_space_char: False
|
||||
save_res_path: ./output/rec/predicts_mv3_none_none_ctc.txt
|
||||
|
||||
Optimizer:
|
||||
name: Adam
|
||||
beta1: 0.9
|
||||
beta2: 0.999
|
||||
lr:
|
||||
learning_rate: 0.0005
|
||||
regularizer:
|
||||
name: 'L2'
|
||||
factor: 0
|
||||
|
||||
Architecture:
|
||||
model_type: rec
|
||||
algorithm: Rosetta
|
||||
Transform:
|
||||
Backbone:
|
||||
name: MobileNetV3
|
||||
scale: 0.5
|
||||
model_name: large
|
||||
Neck:
|
||||
name: SequenceEncoder
|
||||
encoder_type: reshape
|
||||
Head:
|
||||
name: CTCHead
|
||||
fc_decay: 0.0004
|
||||
|
||||
Loss:
|
||||
name: CTCLoss
|
||||
|
||||
PostProcess:
|
||||
name: CTCLabelDecode
|
||||
|
||||
Metric:
|
||||
name: RecMetric
|
||||
main_indicator: acc
|
||||
|
||||
Train:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/ic15_data/
|
||||
label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- CTCLabelEncode: # Class handling label
|
||||
- RecResizeImg:
|
||||
image_shape: [3, 32, 100]
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: False
|
||||
batch_size_per_card: 256
|
||||
drop_last: True
|
||||
num_workers: 8
|
||||
|
||||
Eval:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/ic15_data
|
||||
label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- CTCLabelEncode: # Class handling label
|
||||
- RecResizeImg:
|
||||
image_shape: [3, 32, 100]
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: False
|
||||
drop_last: False
|
||||
batch_size_per_card: 256
|
||||
num_workers: 8
|
|
@ -0,0 +1,51 @@
|
|||
===========================train_params===========================
|
||||
model_name:rec_mv3_none_none_ctc_v2.0
|
||||
python:python3.7
|
||||
gpu_list:0|0,1
|
||||
Global.use_gpu:True|True
|
||||
Global.auto_cast:null
|
||||
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
|
||||
Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./inference/rec_inference
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train
|
||||
norm_train:tools/train.py -c test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml -o
|
||||
pact_train:null
|
||||
fpgm_train:null
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml -o
|
||||
null:null
|
||||
##
|
||||
===========================infer_params===========================
|
||||
Global.save_inference_dir:./output/
|
||||
Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml -o
|
||||
quant_export:null
|
||||
fpgm_export:null
|
||||
distill_export:null
|
||||
export1:null
|
||||
export2:null
|
||||
##
|
||||
infer_model:null
|
||||
infer_export:tools/export_model.py -c test_tipc/configs/rec_mv3_none_none_ctc_v2.0/rec_icdar15_train.yml -o
|
||||
infer_quant:False
|
||||
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
|
||||
--use_gpu:True|False
|
||||
--enable_mkldnn:True|False
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1|6
|
||||
--use_tensorrt:True|False
|
||||
--precision:fp32|fp16|int8
|
||||
--rec_model_dir:
|
||||
--image_dir:./inference/rec_inference
|
||||
--save_log_path:./test/output/
|
||||
--benchmark:True
|
||||
null:null
|
|
@ -0,0 +1,103 @@
|
|||
Global:
|
||||
use_gpu: True
|
||||
epoch_num: 72
|
||||
log_smooth_window: 20
|
||||
print_batch_step: 10
|
||||
save_model_dir: ./output/rec/rec_mv3_tps_bilstm_att/
|
||||
save_epoch_step: 3
|
||||
# evaluation is run every 5000 iterations after the 4000th iteration
|
||||
eval_batch_step: [0, 2000]
|
||||
cal_metric_during_train: True
|
||||
pretrained_model:
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
||||
infer_img: doc/imgs_words/ch/word_1.jpg
|
||||
# for data or label process
|
||||
character_dict_path:
|
||||
max_text_length: 25
|
||||
infer_mode: False
|
||||
use_space_char: False
|
||||
save_res_path: ./output/rec/predicts_mv3_tps_bilstm_att.txt
|
||||
|
||||
|
||||
Optimizer:
|
||||
name: Adam
|
||||
beta1: 0.9
|
||||
beta2: 0.999
|
||||
lr:
|
||||
learning_rate: 0.0005
|
||||
regularizer:
|
||||
name: 'L2'
|
||||
factor: 0.00001
|
||||
|
||||
Architecture:
|
||||
model_type: rec
|
||||
algorithm: RARE
|
||||
Transform:
|
||||
name: TPS
|
||||
num_fiducial: 20
|
||||
loc_lr: 0.1
|
||||
model_name: small
|
||||
Backbone:
|
||||
name: MobileNetV3
|
||||
scale: 0.5
|
||||
model_name: large
|
||||
Neck:
|
||||
name: SequenceEncoder
|
||||
encoder_type: rnn
|
||||
hidden_size: 96
|
||||
Head:
|
||||
name: AttentionHead
|
||||
hidden_size: 96
|
||||
|
||||
|
||||
Loss:
|
||||
name: AttentionLoss
|
||||
|
||||
PostProcess:
|
||||
name: AttnLabelDecode
|
||||
|
||||
Metric:
|
||||
name: RecMetric
|
||||
main_indicator: acc
|
||||
|
||||
Train:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/ic15_data/
|
||||
label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- AttnLabelEncode: # Class handling label
|
||||
- RecResizeImg:
|
||||
image_shape: [3, 32, 100]
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: True
|
||||
batch_size_per_card: 256
|
||||
drop_last: True
|
||||
num_workers: 8
|
||||
|
||||
Eval:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/ic15_data
|
||||
label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- AttnLabelEncode: # Class handling label
|
||||
- RecResizeImg:
|
||||
image_shape: [3, 32, 100]
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: False
|
||||
drop_last: False
|
||||
batch_size_per_card: 256
|
||||
num_workers: 1
|
|
@ -0,0 +1,52 @@
|
|||
===========================train_params===========================
|
||||
model_name:rec_mv3_tps_bilstm_att_v2.0
|
||||
python:python3.7
|
||||
gpu_list:0|0,1
|
||||
Global.use_gpu:True|True
|
||||
Global.auto_cast:null
|
||||
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
|
||||
Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./inference/rec_inference
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train
|
||||
norm_train:tools/train.py -c test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml -o
|
||||
pact_train:null
|
||||
fpgm_train:null
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml -o
|
||||
null:null
|
||||
##
|
||||
===========================infer_params===========================
|
||||
Global.save_inference_dir:./output/
|
||||
Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml -o
|
||||
quant_export:null
|
||||
fpgm_export:null
|
||||
distill_export:null
|
||||
export1:null
|
||||
export2:null
|
||||
##
|
||||
infer_model:null
|
||||
infer_export:tools/export_model.py -c test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml -o
|
||||
infer_quant:False
|
||||
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100" --rec_algorithm="RARE"
|
||||
--use_gpu:True|False
|
||||
--enable_mkldnn:True|False
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1|6
|
||||
--use_tensorrt:True|False
|
||||
--precision:fp32|int8
|
||||
--rec_model_dir:
|
||||
--image_dir:./inference/rec_inference
|
||||
--save_log_path:./test/output/
|
||||
--benchmark:True
|
||||
null:null
|
||||
|
|
@ -0,0 +1,101 @@
|
|||
Global:
|
||||
use_gpu: True
|
||||
epoch_num: 72
|
||||
log_smooth_window: 20
|
||||
print_batch_step: 10
|
||||
save_model_dir: ./output/rec/mv3_tps_bilstm_ctc/
|
||||
save_epoch_step: 3
|
||||
# evaluation is run every 2000 iterations
|
||||
eval_batch_step: [0, 2000]
|
||||
cal_metric_during_train: True
|
||||
pretrained_model:
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
||||
infer_img: doc/imgs_words_en/word_10.png
|
||||
# for data or label process
|
||||
character_dict_path:
|
||||
max_text_length: 25
|
||||
infer_mode: False
|
||||
use_space_char: False
|
||||
save_res_path: ./output/rec/predicts_mv3_tps_bilstm_ctc.txt
|
||||
|
||||
Optimizer:
|
||||
name: Adam
|
||||
beta1: 0.9
|
||||
beta2: 0.999
|
||||
lr:
|
||||
learning_rate: 0.0005
|
||||
regularizer:
|
||||
name: 'L2'
|
||||
factor: 0
|
||||
|
||||
Architecture:
|
||||
model_type: rec
|
||||
algorithm: STARNet
|
||||
Transform:
|
||||
name: TPS
|
||||
num_fiducial: 20
|
||||
loc_lr: 0.1
|
||||
model_name: small
|
||||
Backbone:
|
||||
name: MobileNetV3
|
||||
scale: 0.5
|
||||
model_name: large
|
||||
Neck:
|
||||
name: SequenceEncoder
|
||||
encoder_type: rnn
|
||||
hidden_size: 96
|
||||
Head:
|
||||
name: CTCHead
|
||||
fc_decay: 0.0004
|
||||
|
||||
Loss:
|
||||
name: CTCLoss
|
||||
|
||||
PostProcess:
|
||||
name: CTCLabelDecode
|
||||
|
||||
Metric:
|
||||
name: RecMetric
|
||||
main_indicator: acc
|
||||
|
||||
Train:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/ic15_data/
|
||||
label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- CTCLabelEncode: # Class handling label
|
||||
- RecResizeImg:
|
||||
image_shape: [3, 32, 100]
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: False
|
||||
batch_size_per_card: 256
|
||||
drop_last: True
|
||||
num_workers: 8
|
||||
|
||||
Eval:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/ic15_data
|
||||
label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- CTCLabelEncode: # Class handling label
|
||||
- RecResizeImg:
|
||||
image_shape: [3, 32, 100]
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: False
|
||||
drop_last: False
|
||||
batch_size_per_card: 256
|
||||
num_workers: 4
|
|
@ -0,0 +1,51 @@
|
|||
===========================train_params===========================
|
||||
model_name:rec_mv3_tps_bilstm_ctc_v2.0
|
||||
python:python3.7
|
||||
gpu_list:0|0,1
|
||||
Global.use_gpu:True|True
|
||||
Global.auto_cast:null
|
||||
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
|
||||
Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./inference/rec_inference
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train
|
||||
norm_train:tools/train.py -c test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||
pact_train:null
|
||||
fpgm_train:null
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||
null:null
|
||||
##
|
||||
===========================infer_params===========================
|
||||
Global.save_inference_dir:./output/
|
||||
Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||
quant_export:null
|
||||
fpgm_export:null
|
||||
distill_export:null
|
||||
export1:null
|
||||
export2:null
|
||||
##
|
||||
infer_model:null
|
||||
infer_export:tools/export_model.py -c test_tipc/configs/rec_mv3_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||
infer_quant:False
|
||||
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
|
||||
--use_gpu:True|False
|
||||
--enable_mkldnn:True|False
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1|6
|
||||
--use_tensorrt:True|False
|
||||
--precision:fp32|fp16|int8
|
||||
--rec_model_dir:
|
||||
--image_dir:./inference/rec_inference
|
||||
--save_log_path:./test/output/
|
||||
--benchmark:True
|
||||
null:null
|
|
@ -0,0 +1,98 @@
|
|||
Global:
|
||||
use_gpu: true
|
||||
epoch_num: 5
|
||||
log_smooth_window: 20
|
||||
print_batch_step: 20
|
||||
save_model_dir: ./sar_rec
|
||||
save_epoch_step: 1
|
||||
# evaluation is run every 2000 iterations
|
||||
eval_batch_step: [0, 2000]
|
||||
cal_metric_during_train: True
|
||||
pretrained_model:
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
||||
infer_img:
|
||||
# for data or label process
|
||||
character_dict_path: ppocr/utils/dict90.txt
|
||||
max_text_length: 30
|
||||
infer_mode: False
|
||||
use_space_char: False
|
||||
rm_symbol: True
|
||||
save_res_path: ./output/rec/predicts_sar.txt
|
||||
|
||||
Optimizer:
|
||||
name: Adam
|
||||
beta1: 0.9
|
||||
beta2: 0.999
|
||||
lr:
|
||||
name: Piecewise
|
||||
decay_epochs: [3, 4]
|
||||
values: [0.001, 0.0001, 0.00001]
|
||||
regularizer:
|
||||
name: 'L2'
|
||||
factor: 0
|
||||
|
||||
Architecture:
|
||||
model_type: rec
|
||||
algorithm: SAR
|
||||
Transform:
|
||||
Backbone:
|
||||
name: ResNet31
|
||||
Head:
|
||||
name: SARHead
|
||||
|
||||
Loss:
|
||||
name: SARLoss
|
||||
|
||||
PostProcess:
|
||||
name: SARLabelDecode
|
||||
|
||||
Metric:
|
||||
name: RecMetric
|
||||
|
||||
|
||||
Train:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/ic15_data/
|
||||
label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- SARLabelEncode: # Class handling label
|
||||
- SARRecResizeImg:
|
||||
image_shape: [3, 48, 48, 160] # h:48 w:[48,160]
|
||||
width_downsample_ratio: 0.25
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'valid_ratio'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: True
|
||||
batch_size_per_card: 64
|
||||
drop_last: True
|
||||
num_workers: 8
|
||||
use_shared_memory: False
|
||||
|
||||
Eval:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/ic15_data
|
||||
label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- SARLabelEncode: # Class handling label
|
||||
- SARRecResizeImg:
|
||||
image_shape: [3, 48, 48, 160]
|
||||
width_downsample_ratio: 0.25
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'valid_ratio'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: False
|
||||
drop_last: False
|
||||
batch_size_per_card: 64
|
||||
num_workers: 4
|
||||
use_shared_memory: False
|
||||
|
|
@ -0,0 +1,52 @@
|
|||
===========================train_params===========================
|
||||
model_name:rec_r31_sar
|
||||
python:python3.7
|
||||
gpu_list:0|0,1
|
||||
Global.use_gpu:True|True
|
||||
Global.auto_cast:null
|
||||
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
|
||||
Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./inference/rec_inference
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train
|
||||
norm_train:tools/train.py -c test_tipc/configs/rec_r31_sar/rec_r31_sar.yml -o
|
||||
pact_train:null
|
||||
fpgm_train:null
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c test_tipc/configs/rec_r31_sar/rec_r31_sar.yml -o
|
||||
null:null
|
||||
##
|
||||
===========================infer_params===========================
|
||||
Global.save_inference_dir:./output/
|
||||
Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c test_tipc/configs/rec_r31_sar/rec_r31_sar.yml -o
|
||||
quant_export:null
|
||||
fpgm_export:null
|
||||
distill_export:null
|
||||
export1:null
|
||||
export2:null
|
||||
##
|
||||
infer_model:null
|
||||
infer_export:tools/export_model.py -c test_tipc/configs/rec_r31_sar/rec_r31_sar.yml -o
|
||||
infer_quant:False
|
||||
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/dict90.txt --rec_image_shape="3,48,48,160" --rec_algorithm="SAR"
|
||||
--use_gpu:True|False
|
||||
--enable_mkldnn:True|False
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1|6
|
||||
--use_tensorrt:True|False
|
||||
--precision:fp32|fp16|int8
|
||||
--rec_model_dir:
|
||||
--image_dir:./inference/rec_inference
|
||||
--save_log_path:./test/output/
|
||||
--benchmark:True
|
||||
null:null
|
||||
|
|
@ -0,0 +1,96 @@
|
|||
Global:
|
||||
use_gpu: true
|
||||
epoch_num: 72
|
||||
log_smooth_window: 20
|
||||
print_batch_step: 10
|
||||
save_model_dir: ./output/rec/r34_vd_none_bilstm_ctc/
|
||||
save_epoch_step: 3
|
||||
# evaluation is run every 2000 iterations
|
||||
eval_batch_step: [0, 2000]
|
||||
cal_metric_during_train: True
|
||||
pretrained_model:
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
||||
infer_img: doc/imgs_words_en/word_10.png
|
||||
# for data or label process
|
||||
character_dict_path:
|
||||
max_text_length: 25
|
||||
infer_mode: False
|
||||
use_space_char: False
|
||||
save_res_path: ./output/rec/predicts_r34_vd_none_bilstm_ctc.txt
|
||||
|
||||
Optimizer:
|
||||
name: Adam
|
||||
beta1: 0.9
|
||||
beta2: 0.999
|
||||
lr:
|
||||
learning_rate: 0.0005
|
||||
regularizer:
|
||||
name: 'L2'
|
||||
factor: 0
|
||||
|
||||
Architecture:
|
||||
model_type: rec
|
||||
algorithm: CRNN
|
||||
Transform:
|
||||
Backbone:
|
||||
name: ResNet
|
||||
layers: 34
|
||||
Neck:
|
||||
name: SequenceEncoder
|
||||
encoder_type: rnn
|
||||
hidden_size: 256
|
||||
Head:
|
||||
name: CTCHead
|
||||
fc_decay: 0
|
||||
|
||||
Loss:
|
||||
name: CTCLoss
|
||||
|
||||
PostProcess:
|
||||
name: CTCLabelDecode
|
||||
|
||||
Metric:
|
||||
name: RecMetric
|
||||
main_indicator: acc
|
||||
|
||||
Train:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/ic15_data/
|
||||
label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- CTCLabelEncode: # Class handling label
|
||||
- RecResizeImg:
|
||||
image_shape: [3, 32, 100]
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: True
|
||||
batch_size_per_card: 256
|
||||
drop_last: True
|
||||
num_workers: 8
|
||||
|
||||
Eval:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/ic15_data
|
||||
label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- CTCLabelEncode: # Class handling label
|
||||
- RecResizeImg:
|
||||
image_shape: [3, 32, 100]
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: False
|
||||
drop_last: False
|
||||
batch_size_per_card: 256
|
||||
num_workers: 4
|
|
@ -0,0 +1,51 @@
|
|||
===========================train_params===========================
|
||||
model_name:rec_r34_vd_none_bilstm_ctc_v2.0
|
||||
python:python3.7
|
||||
gpu_list:0|0,1
|
||||
Global.use_gpu:True|True
|
||||
Global.auto_cast:null
|
||||
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
|
||||
Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./inference/rec_inference
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train
|
||||
norm_train:tools/train.py -c test_tipc/configs/rec_r34_vd_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||
pact_train:null
|
||||
fpgm_train:null
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c test_tipc/configs/rec_r34_vd_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||
null:null
|
||||
##
|
||||
===========================infer_params===========================
|
||||
Global.save_inference_dir:./output/
|
||||
Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||
quant_export:null
|
||||
fpgm_export:null
|
||||
distill_export:null
|
||||
export1:null
|
||||
export2:null
|
||||
##
|
||||
infer_model:null
|
||||
infer_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_none_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||
infer_quant:False
|
||||
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
|
||||
--use_gpu:True|False
|
||||
--enable_mkldnn:True|False
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1|6
|
||||
--use_tensorrt:True|False
|
||||
--precision:fp32|fp16|int8
|
||||
--rec_model_dir:
|
||||
--image_dir:./inference/rec_inference
|
||||
--save_log_path:./test/output/
|
||||
--benchmark:True
|
||||
null:null
|
|
@ -0,0 +1,94 @@
|
|||
Global:
|
||||
use_gpu: true
|
||||
epoch_num: 72
|
||||
log_smooth_window: 20
|
||||
print_batch_step: 10
|
||||
save_model_dir: ./output/rec/r34_vd_none_none_ctc/
|
||||
save_epoch_step: 3
|
||||
# evaluation is run every 2000 iterations
|
||||
eval_batch_step: [0, 2000]
|
||||
cal_metric_during_train: True
|
||||
pretrained_model:
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
||||
infer_img: doc/imgs_words_en/word_10.png
|
||||
# for data or label process
|
||||
character_dict_path:
|
||||
max_text_length: 25
|
||||
infer_mode: False
|
||||
use_space_char: False
|
||||
save_res_path: ./output/rec/predicts_r34_vd_none_none_ctc.txt
|
||||
|
||||
Optimizer:
|
||||
name: Adam
|
||||
beta1: 0.9
|
||||
beta2: 0.999
|
||||
lr:
|
||||
learning_rate: 0.0005
|
||||
regularizer:
|
||||
name: 'L2'
|
||||
factor: 0
|
||||
|
||||
Architecture:
|
||||
model_type: rec
|
||||
algorithm: Rosetta
|
||||
Backbone:
|
||||
name: ResNet
|
||||
layers: 34
|
||||
Neck:
|
||||
name: SequenceEncoder
|
||||
encoder_type: reshape
|
||||
Head:
|
||||
name: CTCHead
|
||||
fc_decay: 0.0004
|
||||
|
||||
Loss:
|
||||
name: CTCLoss
|
||||
|
||||
PostProcess:
|
||||
name: CTCLabelDecode
|
||||
|
||||
Metric:
|
||||
name: RecMetric
|
||||
main_indicator: acc
|
||||
|
||||
Train:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/ic15_data/
|
||||
label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- CTCLabelEncode: # Class handling label
|
||||
- RecResizeImg:
|
||||
image_shape: [3, 32, 100]
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: True
|
||||
batch_size_per_card: 256
|
||||
drop_last: True
|
||||
num_workers: 8
|
||||
|
||||
Eval:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/ic15_data
|
||||
label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- CTCLabelEncode: # Class handling label
|
||||
- RecResizeImg:
|
||||
image_shape: [3, 32, 100]
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: False
|
||||
drop_last: False
|
||||
batch_size_per_card: 256
|
||||
num_workers: 4
|
|
@ -0,0 +1,51 @@
|
|||
===========================train_params===========================
|
||||
model_name:rec_r34_vd_none_none_ctc_v2.0
|
||||
python:python3.7
|
||||
gpu_list:0|0,1
|
||||
Global.use_gpu:True|True
|
||||
Global.auto_cast:null
|
||||
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
|
||||
Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./inference/rec_inference
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train
|
||||
norm_train:tools/train.py -c test_tipc/configs/rec_r34_vd_none_none_ctc_v2.0/rec_icdar15_train.yml -o
|
||||
pact_train:null
|
||||
fpgm_train:null
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c test_tipc/configs/rec_r34_vd_none_none_ctc_v2.0/rec_icdar15_train.yml -o
|
||||
null:null
|
||||
##
|
||||
===========================infer_params===========================
|
||||
Global.save_inference_dir:./output/
|
||||
Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_none_none_ctc_v2.0/rec_icdar15_train.yml -o
|
||||
quant_export:null
|
||||
fpgm_export:null
|
||||
distill_export:null
|
||||
export1:null
|
||||
export2:null
|
||||
##
|
||||
infer_model:null
|
||||
infer_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_none_none_ctc_v2.0/rec_icdar15_train.yml -o
|
||||
infer_quant:False
|
||||
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
|
||||
--use_gpu:True|False
|
||||
--enable_mkldnn:True|False
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1|6
|
||||
--use_tensorrt:True|False
|
||||
--precision:fp32|fp16|int8
|
||||
--rec_model_dir:
|
||||
--image_dir:./inference/rec_inference
|
||||
--save_log_path:./test/output/
|
||||
--benchmark:True
|
||||
null:null
|
|
@ -0,0 +1,102 @@
|
|||
Global:
|
||||
use_gpu: True
|
||||
epoch_num: 400
|
||||
log_smooth_window: 20
|
||||
print_batch_step: 10
|
||||
save_model_dir: ./output/rec/b3_rare_r34_none_gru/
|
||||
save_epoch_step: 3
|
||||
# evaluation is run every 5000 iterations after the 4000th iteration
|
||||
eval_batch_step: [0, 2000]
|
||||
cal_metric_during_train: True
|
||||
pretrained_model:
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
||||
infer_img: doc/imgs_words/ch/word_1.jpg
|
||||
# for data or label process
|
||||
character_dict_path:
|
||||
max_text_length: 25
|
||||
infer_mode: False
|
||||
use_space_char: False
|
||||
save_res_path: ./output/rec/predicts_b3_rare_r34_none_gru.txt
|
||||
|
||||
|
||||
Optimizer:
|
||||
name: Adam
|
||||
beta1: 0.9
|
||||
beta2: 0.999
|
||||
lr:
|
||||
learning_rate: 0.0005
|
||||
regularizer:
|
||||
name: 'L2'
|
||||
factor: 0.00000
|
||||
|
||||
Architecture:
|
||||
model_type: rec
|
||||
algorithm: RARE
|
||||
Transform:
|
||||
name: TPS
|
||||
num_fiducial: 20
|
||||
loc_lr: 0.1
|
||||
model_name: large
|
||||
Backbone:
|
||||
name: ResNet
|
||||
layers: 34
|
||||
Neck:
|
||||
name: SequenceEncoder
|
||||
encoder_type: rnn
|
||||
hidden_size: 256 #96
|
||||
Head:
|
||||
name: AttentionHead # AttentionHead
|
||||
hidden_size: 256 #
|
||||
l2_decay: 0.00001
|
||||
|
||||
Loss:
|
||||
name: AttentionLoss
|
||||
|
||||
PostProcess:
|
||||
name: AttnLabelDecode
|
||||
|
||||
Metric:
|
||||
name: RecMetric
|
||||
main_indicator: acc
|
||||
|
||||
Train:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/ic15_data/
|
||||
label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- AttnLabelEncode: # Class handling label
|
||||
- RecResizeImg:
|
||||
image_shape: [3, 32, 100]
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: True
|
||||
batch_size_per_card: 256
|
||||
drop_last: True
|
||||
num_workers: 8
|
||||
|
||||
Eval:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/ic15_data
|
||||
label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- AttnLabelEncode: # Class handling label
|
||||
- RecResizeImg:
|
||||
image_shape: [3, 32, 100]
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: False
|
||||
drop_last: False
|
||||
batch_size_per_card: 256
|
||||
num_workers: 8
|
|
@ -0,0 +1,52 @@
|
|||
===========================train_params===========================
|
||||
model_name:rec_r34_vd_tps_bilstm_att_v2.0
|
||||
python:python3.7
|
||||
gpu_list:0|0,1
|
||||
Global.use_gpu:True|True
|
||||
Global.auto_cast:null
|
||||
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
|
||||
Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./inference/rec_inference
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train
|
||||
norm_train:tools/train.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml -o
|
||||
pact_train:null
|
||||
fpgm_train:null
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml -o
|
||||
null:null
|
||||
##
|
||||
===========================infer_params===========================
|
||||
Global.save_inference_dir:./output/
|
||||
Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml -o
|
||||
quant_export:null
|
||||
fpgm_export:null
|
||||
distill_export:null
|
||||
export1:null
|
||||
export2:null
|
||||
##
|
||||
infer_model:null
|
||||
infer_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml -o
|
||||
infer_quant:False
|
||||
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100" --rec_algorithm="RARE"
|
||||
--use_gpu:True|False
|
||||
--enable_mkldnn:True|False
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1|6
|
||||
--use_tensorrt:True|False
|
||||
--precision:fp32|int8
|
||||
--rec_model_dir:
|
||||
--image_dir:./inference/rec_inference
|
||||
--save_log_path:./test/output/
|
||||
--benchmark:True
|
||||
null:null
|
||||
|
|
@ -0,0 +1,100 @@
|
|||
Global:
|
||||
use_gpu: true
|
||||
epoch_num: 72
|
||||
log_smooth_window: 20
|
||||
print_batch_step: 10
|
||||
save_model_dir: ./output/rec/r34_vd_tps_bilstm_ctc/
|
||||
save_epoch_step: 3
|
||||
# evaluation is run every 2000 iterations
|
||||
eval_batch_step: [0, 2000]
|
||||
cal_metric_during_train: True
|
||||
pretrained_model:
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
||||
infer_img: doc/imgs_words_en/word_10.png
|
||||
# for data or label process
|
||||
character_dict_path:
|
||||
max_text_length: 25
|
||||
infer_mode: False
|
||||
use_space_char: False
|
||||
save_res_path: ./output/rec/predicts_r34_vd_tps_bilstm_ctc.txt
|
||||
|
||||
Optimizer:
|
||||
name: Adam
|
||||
beta1: 0.9
|
||||
beta2: 0.999
|
||||
lr:
|
||||
learning_rate: 0.0005
|
||||
regularizer:
|
||||
name: 'L2'
|
||||
factor: 0
|
||||
|
||||
Architecture:
|
||||
model_type: rec
|
||||
algorithm: STARNet
|
||||
Transform:
|
||||
name: TPS
|
||||
num_fiducial: 20
|
||||
loc_lr: 0.1
|
||||
model_name: large
|
||||
Backbone:
|
||||
name: ResNet
|
||||
layers: 34
|
||||
Neck:
|
||||
name: SequenceEncoder
|
||||
encoder_type: rnn
|
||||
hidden_size: 256
|
||||
Head:
|
||||
name: CTCHead
|
||||
fc_decay: 0
|
||||
|
||||
Loss:
|
||||
name: CTCLoss
|
||||
|
||||
PostProcess:
|
||||
name: CTCLabelDecode
|
||||
|
||||
Metric:
|
||||
name: RecMetric
|
||||
main_indicator: acc
|
||||
|
||||
Train:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/ic15_data/
|
||||
label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- CTCLabelEncode: # Class handling label
|
||||
- RecResizeImg:
|
||||
image_shape: [3, 32, 100]
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: True
|
||||
batch_size_per_card: 256
|
||||
drop_last: True
|
||||
num_workers: 8
|
||||
|
||||
Eval:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/ic15_data
|
||||
label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- CTCLabelEncode: # Class handling label
|
||||
- RecResizeImg:
|
||||
image_shape: [3, 32, 100]
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: False
|
||||
drop_last: False
|
||||
batch_size_per_card: 256
|
||||
num_workers: 4
|
|
@ -0,0 +1,51 @@
|
|||
===========================train_params===========================
|
||||
model_name:rec_r34_vd_tps_bilstm_ctc_v2.0
|
||||
python:python3.7
|
||||
gpu_list:0|0,1
|
||||
Global.use_gpu:True|True
|
||||
Global.auto_cast:null
|
||||
Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=100
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
|
||||
Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./inference/rec_inference
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train
|
||||
norm_train:tools/train.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||
pact_train:null
|
||||
fpgm_train:null
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||
null:null
|
||||
##
|
||||
===========================infer_params===========================
|
||||
Global.save_inference_dir:./output/
|
||||
Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||
quant_export:null
|
||||
fpgm_export:null
|
||||
distill_export:null
|
||||
export1:null
|
||||
export2:null
|
||||
##
|
||||
infer_model:null
|
||||
infer_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_ctc_v2.0/rec_icdar15_train.yml -o
|
||||
infer_quant:False
|
||||
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100"
|
||||
--use_gpu:True|False
|
||||
--enable_mkldnn:True|False
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1|6
|
||||
--use_tensorrt:True|False
|
||||
--precision:fp32|fp16|int8
|
||||
--rec_model_dir:
|
||||
--image_dir:./inference/rec_inference
|
||||
--save_log_path:./test/output/
|
||||
--benchmark:True
|
||||
null:null
|
|
@ -0,0 +1,108 @@
|
|||
Global:
|
||||
use_gpu: True
|
||||
epoch_num: 72
|
||||
log_smooth_window: 20
|
||||
print_batch_step: 5
|
||||
save_model_dir: ./output/rec/srn_new
|
||||
save_epoch_step: 3
|
||||
# evaluation is run every 5000 iterations after the 4000th iteration
|
||||
eval_batch_step: [0, 5000]
|
||||
cal_metric_during_train: True
|
||||
pretrained_model:
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
||||
infer_img: doc/imgs_words/ch/word_1.jpg
|
||||
# for data or label process
|
||||
character_dict_path:
|
||||
max_text_length: 25
|
||||
num_heads: 8
|
||||
infer_mode: False
|
||||
use_space_char: False
|
||||
save_res_path: ./output/rec/predicts_srn.txt
|
||||
|
||||
|
||||
Optimizer:
|
||||
name: Adam
|
||||
beta1: 0.9
|
||||
beta2: 0.999
|
||||
clip_norm: 10.0
|
||||
lr:
|
||||
learning_rate: 0.0001
|
||||
|
||||
Architecture:
|
||||
model_type: rec
|
||||
algorithm: SRN
|
||||
in_channels: 1
|
||||
Transform:
|
||||
Backbone:
|
||||
name: ResNetFPN
|
||||
Head:
|
||||
name: SRNHead
|
||||
max_text_length: 25
|
||||
num_heads: 8
|
||||
num_encoder_TUs: 2
|
||||
num_decoder_TUs: 4
|
||||
hidden_dims: 512
|
||||
|
||||
Loss:
|
||||
name: SRNLoss
|
||||
|
||||
PostProcess:
|
||||
name: SRNLabelDecode
|
||||
|
||||
Metric:
|
||||
name: RecMetric
|
||||
main_indicator: acc
|
||||
|
||||
Train:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/ic15_data/
|
||||
label_file_list: ["./train_data/ic15_data/rec_gt_train.txt"]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- SRNLabelEncode: # Class handling label
|
||||
- SRNRecResizeImg:
|
||||
image_shape: [1, 64, 256]
|
||||
- KeepKeys:
|
||||
keep_keys: ['image',
|
||||
'label',
|
||||
'length',
|
||||
'encoder_word_pos',
|
||||
'gsrm_word_pos',
|
||||
'gsrm_slf_attn_bias1',
|
||||
'gsrm_slf_attn_bias2'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: False
|
||||
batch_size_per_card: 64
|
||||
drop_last: False
|
||||
num_workers: 4
|
||||
|
||||
Eval:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/ic15_data
|
||||
label_file_list: ["./train_data/ic15_data/rec_gt_test.txt"]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- SRNLabelEncode: # Class handling label
|
||||
- SRNRecResizeImg:
|
||||
image_shape: [1, 64, 256]
|
||||
- KeepKeys:
|
||||
keep_keys: ['image',
|
||||
'label',
|
||||
'length',
|
||||
'encoder_word_pos',
|
||||
'gsrm_word_pos',
|
||||
'gsrm_slf_attn_bias1',
|
||||
'gsrm_slf_attn_bias2']
|
||||
loader:
|
||||
shuffle: False
|
||||
drop_last: False
|
||||
batch_size_per_card: 32
|
||||
num_workers: 4
|
|
@ -0,0 +1,52 @@
|
|||
===========================train_params===========================
|
||||
model_name:rec_r50_fpn_vd_none_srn
|
||||
python:python3.7
|
||||
gpu_list:0|0,1
|
||||
Global.use_gpu:True|True
|
||||
Global.auto_cast:null
|
||||
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
|
||||
Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./inference/rec_inference
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train
|
||||
norm_train:tools/train.py -c test_tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml -o
|
||||
pact_train:null
|
||||
fpgm_train:null
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c test_tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml -o
|
||||
null:null
|
||||
##
|
||||
===========================infer_params===========================
|
||||
Global.save_inference_dir:./output/
|
||||
Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c test_tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml -o
|
||||
quant_export:null
|
||||
fpgm_export:null
|
||||
distill_export:null
|
||||
export1:null
|
||||
export2:null
|
||||
##
|
||||
infer_model:null
|
||||
infer_export:tools/export_model.py -c test_tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml -o
|
||||
infer_quant:False
|
||||
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="1,64,256" --rec_algorithm="SRN" --use_space_char=False
|
||||
--use_gpu:True|False
|
||||
--enable_mkldnn:True|False
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1|6
|
||||
--use_tensorrt:True|False
|
||||
--precision:fp32|int8
|
||||
--rec_model_dir:
|
||||
--image_dir:./inference/rec_inference
|
||||
--save_log_path:./test/output/
|
||||
--benchmark:True
|
||||
null:null
|
||||
|
|
@ -52,6 +52,15 @@ if [ ${MODE} = "lite_train_lite_infer" ];then
|
|||
wget -nc -P ./train_data/ wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/total_text_lite.tar --no-check-certificate
|
||||
cd ./train_data && tar xf total_text_lite.tar && ln -s total_text && cd ../
|
||||
fi
|
||||
if [ ${model_name} == "det_mv3_db_v2.0" ]; then
|
||||
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar --no-check-certificate
|
||||
cd ./inference/ && tar xf det_mv3_db_v2.0_train.tar && cd ../
|
||||
fi
|
||||
if [ ${model_name} == "det_r50_db_v2.0" ]; then
|
||||
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams --no-check-certificate
|
||||
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar --no-check-certificate
|
||||
cd ./inference/ && tar xf det_r50_vd_db_v2.0_train.tar && cd ../
|
||||
fi
|
||||
|
||||
elif [ ${MODE} = "whole_train_whole_infer" ];then
|
||||
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams --no-check-certificate
|
||||
|
@ -101,36 +110,34 @@ elif [ ${MODE} = "whole_infer" ];then
|
|||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar --no-check-certificate
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
|
||||
cd ./inference && tar xf ch_ppocr_server_v2.0_det_train.tar && tar xf ch_det_data_50.tar && cd ../
|
||||
elif [ ${model_name} = "ocr_system_mobile" ]; then
|
||||
elif [ ${model_name} = "ch_ppocr_mobile_v2.0" ]; then
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar --no-check-certificate
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar --no-check-certificate
|
||||
cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_det_data_50.tar && cd ../
|
||||
elif [ ${model_name} = "ocr_system_server" ]; then
|
||||
elif [ ${model_name} = "ch_ppocr_server_v2.0" ]; then
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar --no-check-certificate
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar --no-check-certificate
|
||||
cd ./inference && tar xf ch_ppocr_server_v2.0_det_infer.tar && tar xf ch_ppocr_server_v2.0_rec_infer.tar && tar xf ch_det_data_50.tar && cd ../
|
||||
elif [ ${model_name} = "ocr_rec" ]; then
|
||||
rm -rf ./train_data/ic15_data
|
||||
elif [ ${model_name} = "ch_ppocr_mobile_v2.0_rec" ]; then
|
||||
eval_model_name="ch_ppocr_mobile_v2.0_rec_infer"
|
||||
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar --no-check-certificate
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar --no-check-certificate
|
||||
cd ./inference && tar xf ${eval_model_name}.tar && tar xf rec_inference.tar && cd ../
|
||||
elif [ ${model_name} = "ocr_server_rec" ]; then
|
||||
rm -rf ./train_data/ic15_data
|
||||
elif [ ${model_name} = "ch_ppocr_server_v2.0_rec" ]; then
|
||||
eval_model_name="ch_ppocr_server_v2.0_rec_infer"
|
||||
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar --no-check-certificate
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar --no-check-certificate
|
||||
cd ./inference && tar xf ${eval_model_name}.tar && tar xf rec_inference.tar && cd ../
|
||||
fi
|
||||
elif [ ${model_name} = "ch_PPOCRv2_det" ]; then
|
||||
if [ ${model_name} = "ch_PPOCRv2_det" ]; then
|
||||
eval_model_name="ch_PP-OCRv2_det_infer"
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
|
||||
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar --no-check-certificate
|
||||
cd ./inference && tar xf ${eval_model_name}.tar && tar xf ch_det_data_50.tar && cd ../
|
||||
fi
|
||||
elif [ ${model_name} = "ch_PPOCRv2_det" ]; then
|
||||
if [ ${model_name} = "ch_PPOCRv2_det" ]; then
|
||||
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
|
||||
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/e2e_server_pgnetA_infer.tar --no-check-certificate
|
||||
cd ./inference && tar xf e2e_server_pgnetA_infer.tar && tar xf ch_det_data_50.tar && cd ../
|
||||
|
@ -141,11 +148,22 @@ elif [ ${MODE} = "whole_infer" ];then
|
|||
fi
|
||||
if [ ${model_name} == "det_r50_vd_sast_icdar15_v2.0" ]; then
|
||||
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar --no-check-certificate
|
||||
cd ./inference/ && tar det_r50_vd_sast_icdar15_v2.0_train.tar && cd ../
|
||||
cd ./inference/ && tar xf det_r50_vd_sast_icdar15_v2.0_train.tar && cd ../
|
||||
fi
|
||||
|
||||
if [ ${model_name} == "det_mv3_db_v2.0" ]; then
|
||||
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar --no-check-certificate
|
||||
cd ./inference/ && tar xf det_mv3_db_v2.0_train.tar && cd ../
|
||||
fi
|
||||
if [ ${model_name} == "det_r50_db_v2.0" ]; then
|
||||
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar --no-check-certificate
|
||||
cd ./inference/ && tar xf det_r50_vd_db_v2.0_train.tar && cd ../
|
||||
fi
|
||||
fi
|
||||
if [ ${MODE} = "klquant_whole_infer" ]; then
|
||||
if [ ${model_name} = "ch_ppocr_mobile_v2.0_det" ]; then
|
||||
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar --no-check-certificate
|
||||
cd ./train_data/ && tar xf icdar2015_lite.tar
|
||||
ln -s ./icdar2015_lite ./icdar2015 && cd ../
|
||||
if [ ${model_name} = "ch_ppocr_mobile_v2.0_det_KL" ]; then
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar --no-check-certificate
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
|
||||
cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_det_data_50.tar && cd ../
|
||||
|
@ -163,7 +181,7 @@ if [ ${MODE} = "cpp_infer" ];then
|
|||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar --no-check-certificate
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar --no-check-certificate
|
||||
cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_det_data_50.tar && cd ../
|
||||
elif [ ${model_name} = "ocr_rec" ]; then
|
||||
elif [ ${model_name} = "ch_ppocr_mobile_v2.0_rec" ]; then
|
||||
wget -nc -P ./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar --no-check-certificate
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar --no-check-certificate
|
||||
cd ./inference && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf rec_inference.tar && cd ../
|
||||
|
|
|
@ -90,36 +90,38 @@ infer_value1=$(func_parser_value "${lines[50]}")
|
|||
|
||||
# parser klquant_infer
|
||||
if [ ${MODE} = "klquant_whole_infer" ]; then
|
||||
dataline=$(awk 'NR==1 NR==17{print}' $FILENAME)
|
||||
dataline=$(awk 'NR==1, NR==17{print}' $FILENAME)
|
||||
lines=(${dataline})
|
||||
model_name=$(func_parser_value "${lines[1]}")
|
||||
python=$(func_parser_value "${lines[2]}")
|
||||
export_weight=$(func_parser_key "${lines[3]}")
|
||||
save_infer_key=$(func_parser_key "${lines[4]}")
|
||||
# parser inference model
|
||||
infer_model_dir_list=$(func_parser_value "${lines[3]}")
|
||||
infer_export_list=$(func_parser_value "${lines[4]}")
|
||||
infer_is_quant=$(func_parser_value "${lines[5]}")
|
||||
infer_model_dir_list=$(func_parser_value "${lines[5]}")
|
||||
infer_export_list=$(func_parser_value "${lines[6]}")
|
||||
infer_is_quant=$(func_parser_value "${lines[7]}")
|
||||
# parser inference
|
||||
inference_py=$(func_parser_value "${lines[6]}")
|
||||
use_gpu_key=$(func_parser_key "${lines[7]}")
|
||||
use_gpu_list=$(func_parser_value "${lines[7]}")
|
||||
use_mkldnn_key=$(func_parser_key "${lines[8]}")
|
||||
use_mkldnn_list=$(func_parser_value "${lines[8]}")
|
||||
cpu_threads_key=$(func_parser_key "${lines[9]}")
|
||||
cpu_threads_list=$(func_parser_value "${lines[9]}")
|
||||
batch_size_key=$(func_parser_key "${lines[10]}")
|
||||
batch_size_list=$(func_parser_value "${lines[10]}")
|
||||
use_trt_key=$(func_parser_key "${lines[11]}")
|
||||
use_trt_list=$(func_parser_value "${lines[11]}")
|
||||
precision_key=$(func_parser_key "${lines[12]}")
|
||||
precision_list=$(func_parser_value "${lines[12]}")
|
||||
infer_model_key=$(func_parser_key "${lines[13]}")
|
||||
image_dir_key=$(func_parser_key "${lines[14]}")
|
||||
infer_img_dir=$(func_parser_value "${lines[14]}")
|
||||
save_log_key=$(func_parser_key "${lines[15]}")
|
||||
benchmark_key=$(func_parser_key "${lines[16]}")
|
||||
benchmark_value=$(func_parser_value "${lines[16]}")
|
||||
infer_key1=$(func_parser_key "${lines[17]}")
|
||||
infer_value1=$(func_parser_value "${lines[17]}")
|
||||
inference_py=$(func_parser_value "${lines[8]}")
|
||||
use_gpu_key=$(func_parser_key "${lines[9]}")
|
||||
use_gpu_list=$(func_parser_value "${lines[9]}")
|
||||
use_mkldnn_key=$(func_parser_key "${lines[10]}")
|
||||
use_mkldnn_list=$(func_parser_value "${lines[10]}")
|
||||
cpu_threads_key=$(func_parser_key "${lines[11]}")
|
||||
cpu_threads_list=$(func_parser_value "${lines[11]}")
|
||||
batch_size_key=$(func_parser_key "${lines[12]}")
|
||||
batch_size_list=$(func_parser_value "${lines[12]}")
|
||||
use_trt_key=$(func_parser_key "${lines[13]}")
|
||||
use_trt_list=$(func_parser_value "${lines[13]}")
|
||||
precision_key=$(func_parser_key "${lines[14]}")
|
||||
precision_list=$(func_parser_value "${lines[14]}")
|
||||
infer_model_key=$(func_parser_key "${lines[15]}")
|
||||
image_dir_key=$(func_parser_key "${lines[16]}")
|
||||
infer_img_dir=$(func_parser_value "${lines[16]}")
|
||||
save_log_key=$(func_parser_key "${lines[17]}")
|
||||
benchmark_key=$(func_parser_key "${lines[18]}")
|
||||
benchmark_value=$(func_parser_value "${lines[18]}")
|
||||
infer_key1=$(func_parser_key "${lines[19]}")
|
||||
infer_value1=$(func_parser_value "${lines[19]}")
|
||||
fi
|
||||
|
||||
LOG_PATH="./test_tipc/output"
|
||||
|
@ -226,7 +228,7 @@ if [ ${MODE} = "whole_infer" ] || [ ${MODE} = "klquant_whole_infer" ]; then
|
|||
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
|
||||
export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}"
|
||||
echo ${infer_run_exports[Count]}
|
||||
echo $export_cmd
|
||||
echo $export_cmd
|
||||
eval $export_cmd
|
||||
status_export=$?
|
||||
status_check $status_export "${export_cmd}" "${status_log}"
|
||||
|
@ -235,7 +237,7 @@ if [ ${MODE} = "whole_infer" ] || [ ${MODE} = "klquant_whole_infer" ]; then
|
|||
fi
|
||||
#run inference
|
||||
is_quant=${infer_quant_flag[Count]}
|
||||
if [ ${MODE} = "klquant_infer" ]; then
|
||||
if [ ${MODE} = "klquant_whole_infer" ]; then
|
||||
is_quant="True"
|
||||
fi
|
||||
func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant}
|
||||
|
@ -336,7 +338,7 @@ else
|
|||
|
||||
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
|
||||
# save norm trained models to set pretrain for pact training and fpgm training
|
||||
if [ ${trainer} = ${trainer_norm} ] && [ ${nodes} -le 1]; then
|
||||
if [ ${trainer} = ${trainer_norm} ] && [ ${nodes} -le 1 ]; then
|
||||
load_norm_train_model=${set_eval_pretrain}
|
||||
fi
|
||||
# run eval
|
||||
|
@ -359,7 +361,7 @@ else
|
|||
#run inference
|
||||
eval $env
|
||||
save_infer_path="${save_log}"
|
||||
if [ ${inference_dir} != "null" ] && [ ${inference_dir} != '##' ]; then
|
||||
if [[ ${inference_dir} != "null" ]] && [[ ${inference_dir} != '##' ]]; then
|
||||
infer_model_dir="${save_infer_path}/${inference_dir}"
|
||||
else
|
||||
infer_model_dir=${save_infer_path}
|
||||
|
|
|
@ -91,7 +91,7 @@ class TextRecognizer(object):
|
|||
time_keys=[
|
||||
'preprocess_time', 'inference_time', 'postprocess_time'
|
||||
],
|
||||
warmup=2,
|
||||
warmup=0,
|
||||
logger=logger)
|
||||
|
||||
def resize_norm_img(self, img, max_wh_ratio):
|
||||
|
|
Loading…
Reference in New Issue